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Abstract—Intelligent vehicles, often parked for long periods,
are ideally suited to serve as computational nodes to expand
the Mobile Edge Computing (MEC) infrastructure, with con-
tainerization significantly enhancing the system’s load balancing,
self-healing, resource isolation, and security. However, fluctua-
tions in task demand and frequent container image downloads
during peak hours create high loads on containerized nodes, as
multiple mobile devices offload tasks simultaneously, leading to
significant processing delays. Many existing studies make the
simplified assumption of predefined patterns of task arrivals,
which overlooks this issue and makes suboptimal decisions.
In this paper, we consider a Parked Vehicles (PVs)-extended
MEC scenario, where multiple devices request services on PVs
functioning as edge servers, all controlled by a central base
station. Task arrivals follow observed patterns based on long-
term trends, such as peak and off-peak periods, resembling
realistic arrival patterns rather than predefined ones. To optimize
task offloading by identifying these patterns, we propose the
Sequence-Aware Task Scheduling (SATS) algorithm, which is
a policy gradient-based deep reinforcement learning approach
that integrates Transformer and LSTM architectures to capture
patterns in time-series task arrivals and relationships between
nodes in a collaborative and containerized environment, thereby
enhancing the efficiency of online task scheduling. The primary
objective of SATS is to optimize the task offloading policy and
minimize delay and energy consumption for all devices and PVs.
Extensive numerical comparisons against baselines demonstrate
the effectiveness and advantages of our algorithm.

Index Terms—Parked Vehicles, Vehicles Edge Computing,
Mobile Edge Computing, Container, Reinforcement Learning,
LSTM, Transformer

I. INTRODUCTION

In recent decades, the significant increase in electric vehicles
has made them a key component of the Internet of Things
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Fig. 1. Comparison of hypervisor-based and container-based virtualizations.

(IoT). With many vehicles parked for considerable periods,
Parked Vehicles (PVs) are well-suited as edge computing
nodes, providing computational resources to nearby devices
and enhancing efficiency. To optimize resource utilization on
PVs, containers are widely adopted [1]–[3]. These studies
demonstrate the ability of containers to enhance the effective
use of PVs. Leveraging containers avoids the high finan-
cial and time costs of deploying dedicated Vehicles Edge
Computing (VEC) servers, while still supporting a range of
computation-intensive applications. As shown in Figure 1,
containers operate at the Operating System (OS) level, en-
hancing resource efficiency by creating isolated user-space in-
stances. Additionally, containers provide faster start-up speeds
and lower hardware and operational costs compared to virtual
machines. Therefore, containerization offers an effective and
scalable solution for optimizing PVs in VEC systems.

Before running a container, a local image file containing
the code, binaries, system tools, and configuration files must
be available, and the download time of multiple images could
be time-consuming, especially for delay-sensitive tasks that
are often short-lived. Several studies have proposed task-
offloading algorithms for containerized scenarios. Liu et al.
[4] introduced a Deep Reinforcement Learning (DRL)-based
approach to address computation offloading and resource
allocation strategies within VEC networks. Similarly, Lu et
al. [5] tackled the task offloading challenge in a container-
based edge computing framework, leveraging the Proximal
Policy Optimization (PPO) algorithm. Notably, [4] assumes
that each device generates exactly one task in every time
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slot, which simplifies task arrival patterns by treating them as
deterministic. While [5] models tasks as arriving in a random
sequence, allowing for more variability in task arrival times,
but potentially ignoring the impact of structured patterns such
as peak hours or bursts of demand.

In practice, however, PVs often face limited processing
capacities. When a large number of mobile devices simul-
taneously offload their tasks to the same PV, the PV’s load
may become excessive, further extending image download
times and leading to increased processing delays. Furthermore,
downloading multiple necessary images while simultaneously
uninstalling existing ones is highly time-consuming due to
storage limitations in PVs. This adds additional burden and
further prolongs the overall task completion time. An effective
solution must consider the image repositories of PVs in the
current time slot and adapt image requests during peak hours,
while also accounting for time-series patterns to anticipate
future demand and minimize unnecessary costs. While existing
approaches, such as those in [6]–[9] rely on traditional meth-
ods, struggling to capture the dynamic, time-varying nature
of task allocation and resource distribution. The work in
[10]–[12] employs Reinforcement Learning (RL) techniques
that primarily focus on optimizing task offloading policies to
balance computational loads or enhance resource allocation
efficiency. However, these approaches overlook the critical
impact of dynamic storage strategies and temporal variations,
which significantly influence overall system performance.

Consequently, we develop the Sequence-Aware Task
Scheduling (SATS) algorithm, a policy gradient-based RL
method that leverages a Transformer to capture the dynamic
characteristics of the PV environment, enriching our policy
network with real-time resource information. Additionally, by
incorporating a Long Short-Term Memory (LSTM) model,
historical task trends can be analyzed to enhance predic-
tive accuracy, thereby enabling the model to make informed
decisions for the upcoming peak hours. The memory cells
and gating mechanisms of LSTMs help address issues like
vanishing gradients, which are crucial for efficient time-series
prediction [13]. Existing studies propose caching strategies
using LSTM [14], [15] and Transformer architectures [16],
respectively, to predict content demand, maximize cache ef-
ficiency, and predict energy arrival process in dynamic MEC
environments. These studies demonstrate the effectiveness of
leveraging LSTM and Transformer models to tackle time-
series challenges and improve resource utilization in MEC
systems. In MEC networks, LSTMs enhance performance
by predicting network traffic, optimizing resource allocation,
and reducing latency. Transformers, with their self-attention
mechanism and parallel processing capabilities, capture global
relationships across multiple PVs. Together, these technologies
form a comprehensive framework that improves task offload-
ing policies and enhances SATS efficiency.

Our containerized PV-based VEC system comprises a di-
verse set of request devices and PVs, which download images
from the Base Station (BS), serving as the central controller.
The BS executes the SATS algorithm and facilitates wireless
communication between PVs and devices. The model’s ability
to account for task arrivals following discernible patterns

further enhances its practical applicability and overall perfor-
mance. Experimental results demonstrate SATS’s effectiveness
in generating efficient task offloading strategies, reducing
image download time and energy costs, and achieving superior
optimization outcomes compared to baseline methods. The key
contributions of our research are summarized as follows:

1) We model task scheduling in VEC systems by framing it
as a patterned task allocation problem. Containerization
is employed to improve computation and isolation in
the VEC environment, equipping PVs with containers
to enable lightweight, scalable offloading services. PVs
download appropriate images from the base station to
execute tasks offloaded from request devices. Unlike
existing methods that assume static or deterministic
task arrivals, our approach enhances the accuracy and
applicability of task offloading within PVs.

2) To address the issues of neglected task patterns and
the failure of existing models to recognize and adapt
to the complex and evolving relationships among PVs,
we integrate LSTM and Transformer models into our
system. This integration captures the historical patterns
of task arrivals and deepens our understanding of the
image repository among PVs. By doing so, we aim to
significantly enhance system performance, particularly
by reducing latency costs and improving the reliability
of task offloading policies.

3) We propose a policy gradient-based RL algorithm named
SATS, specifically designed for VEC networks, focusing
on addressing the latency and limited computational
power of PVs. This leads us to establish an optimization
problem, which seeks to reduce both energy and time
costs within the network.

4) We evaluate our proposed algorithm against three base-
line methods. The results demonstrate that our approach
achieves better performance and significantly improves
efficiency by recognizing time patterns with peak hours.
This method can lead to up to a 44% reduction in time
costs and a 37% reduction in energy costs, proving to
be highly effective.

The remainder of this paper is organized as follows: Section
II reviews the relevant literature. Section III outlines the
architecture of the VEC system. Section IV introduces the
SATS algorithm and formulates the problem of minimizing
time and energy costs. Section V presents the simulation
results. Finally, the paper concludes with Section VI.

II. RELATED WORK

Vehicles Edge Computing. Ren et al. [11] propose a
blockchain-based trust management framework for VEC net-
works, using DRL to optimize vehicular service offloading and
migration, enhancing trust and resource allocation efficiency.
Fan et al. [6] present a game-theoretic approach for task
offloading and resource allocation in VEC, incorporating edge-
to-edge cooperation to optimize load balancing and reduce
latency. Liu et al. [18] proposed a RL-based solution to
maximize network utility, but neglected the network’s temporal
dynamics. Collectively, these studies highlighted the inherent
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TABLE I
DIFFERENCE BETWEEN OUR SCHEME AND OTHER RELATED SCHEMES.

Scheme Vehicle Assistance Container Involved Reinforcement Learning Transformer Usage Task Arrival Patterns
[17] N/A × × × ×
[10] Parked Vehicles Assistance × ✓ × ×
[11] N/A × ✓ × ×
[6] N/A × × × ×
[7] Moving Vehicles Assistance × × × ×
[8] Parked Vehicles Assistance ✓ × × ×
[9] Parked Vehicles Assistance ✓ × × ×
[1] Parked Vehicles Assistance ✓ × × ×

[12] Parked Vehicles Assistance ✓ ✓ × ×
Our Scheme Parked Vehicles Assistance ✓ ✓ ✓ ✓

challenges associated with mobile vehicles within VEC sys-
tems. Consequently, they indicated that PVs might provide
a more stable and efficient alternative for VEC applica-
tions, potentially enhancing the reliability and effectiveness of
edge computing environments. Recent studies have leveraged
conventional vehicles as edge computing nodes in various
applications. Feng et al. [19] utilized mobile vehicles’ idle
computational capacity for offloading services, eliminating the
need for fixed infrastructure. This approach contrasted with
using PVs, where Hou et al. [20] highlighted in their introduc-
tion of vehicular fog computing, exploiting PVs as stationary
nodes for data relaying and processing. Expanding on this
concept, Fan et al. [21] integrated both mobile and parked
vehicles with base stations to enhance the MEC framework,
focusing on reducing priority-weighted task processing delays.
They proposed an iterative solution using generalized Benders
decomposition, complemented by a heuristic algorithm for
precision in near-optimal solutions. Ge et al. [22] proposed a
two-stage service migration algorithm for Parked Vehicle Edge
Computing (PVEC) networks. This algorithm breaks down the
original problem into two distinct stages: service migration
between Service Providers (SP) and the selection of serving
parked vehicles in parking lots.

Involvement of Containers. Due to its lightweight na-
ture and ease of deployment, containerization has become a
promising approach in MEC environments. Various studies
have been conducted to leverage this technology, including ef-
forts to achieve energy-efficient task selection and scheduling
within edge networks [23], to facilitate rapid container deploy-
ment and simplify management for low-latency video analytics
close to users [24], and to assess container performance
in edge computing environments through real experiments
[25], [26]. Tang et al. [27] developed a container schedul-
ing algorithm that comprehends the complex dependencies
between layers and images, aiming to reduce the overall task
completion time. Nguyen et al. [2] advanced the exploration of
container technology on PV servers, and developed a utility-
aware heuristic to reduce system costs while ensuring service
quality. However, they assumed PVs autonomously generate
containers, an impractical expectation as [1]. They addressed
a task-container matching problem using a matching game
to facilitate on-demand offloading, yet underestimated PVs’
capability to update images for diverse tasks.

To the best of our knowledge, existing research has not

Fig. 2. An edge computing framework where parked vehicles serve as nodes
to which devices offload tasks, making use of the PVs’ unused computational
resources. PVs and devices can download the necessary container images from
the base station. Tasks arrive in each time slot, and K(1) denotes the set of
tasks arriving in time slot 1.

effectively modeled the integration of PVs and container
technologies. Our model design and the development of
the PV-container system address the ongoing challenges of
container management of PVs, highlighting the urgent need
for continued innovation to fully leverage these technologies’
potential. As shown in Table I, we delineate the distinctions
between our approach and other methodologies. Notably, our
strategy provides a more comprehensive model, effectively
incorporating the advantages of container technology, task
arrival patterns, and PV interconnection to enhance the overall
efficiency and responsiveness of VEC systems.

III. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we first define our system model, trans-
mission and computing latency, and then present the problem
formulation step by step.

A. System Model
As shown in Figure 2, we introduce a container-based VEC

framework, tailored for parking lot scenarios, enabling PVs
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to download essential images to facilitate task offloading in
VEC environments. In this scenario, a BS, denoted by Nc,
serves as the central node, providing service coverage to N
PVs and to devices numbered sequentially from N +1 to M .
The system time is divided into discrete time frames of equal
lengths, denoted by t ∈ T = {1, 2, · · · }. The collection of PVs
is denoted by N = {1, 2, . . . , N}. Each PV n is equipped with
a computing unit defined by bandwidth Bn, maximum storage
capacity Dn, CPU frequency Fn, maximum memory Mn,
and remaining memory µn(t) at time slot t. The coordinate
of the PV n is given as (xn, yn), collectively defining the
vehicle n as tuple n(t) = (Bn, Dn, Fn,Mn, µn(t), xn, yn).
Additionally, a variety of devices, represented as the set
M = {N + 1, N + 2, . . . ,M}, connect to this network and
offload tasks requiring container execution to these vehic-
ular computing units. These devices are similarly specified
by attributes including CPU frequency Fm, bandwidth Bm,
maximum storage capacity Dm, maximum memory size Mm,
and remaining memory µm(t) at time slot t. Their coordinates
at time slot t are given by (xm(t), ym(t)). Collectively,
these specifications form a tuple represented as m(t) =
(Bm, Dm, Fm,Mm, µm(t), xm(t), ym(t)). For task process-
ing, a PV must initiate a container, which relies on locally
accessible images. To facilitate uninterrupted task execution,
the necessary images must be pre-fetched and locally stored.
The repository of images is symbolized by I = {1, 2, . . . , I},
with each image i corresponding to a distinct container,
whose size is si. It is presumed that requesting a container
is synonymous with requesting the associated image, all of
which are maintained at the BS.

We define xi
n(t) ∈ {0, 1} to indicate the presence of image

i on a PV n at the beginning of time slot t, where xi
n(t) = 1

means that image i is stored on PV n, and xi
n(t) = 0 signifies

its absence. A similar notation, xi
m(t) ∈ {0, 1}, is used for

devices, where xi
m(t) = 1 indicates that image i is stored on

device m, and xi
m(t) = 0 indicates it is not. It is important

to note that both vehicles and devices possess limited storage
capacities for these images, ensuring that the stored images do
not exceed the available disk space on any vehicle or device.
We formally articulate this constraint as follows:

C1 :
∑
i∈I

xi
n(t)× si ≤ Dn, n ∈ N , t ∈ T (1)

C2 :
∑
i∈I

xi
m(t)× si ≤ Dm,m ∈M, t ∈ T . (2)

In each time slot t, each device can send multiple
computational tasks, and the collection of tasks emanat-
ing from devices during a specific time slot t is rep-
resented as K(t) = {1, 2, · · · ,Kt}. The task k =
(dk,mk, fk, ik, t

arrive
k , tddlk , qk, bk), where dk is the size of the

task k, mk is the memory needed by the task k, fk is the total
number of CPU cycles required to accomplish the computation
task, ik is the specific image required for a task, selected
from a limited assortment of available images. Meanwhile,
qk represents the device that generates the task k, bk is the
allocated bandwidth of the task, and tddlk is the maximum
tolerance deadline for completing this task. Here, We employ

the indicator αn
k (t) = 1 to signify that task k is designated

for offloading to PV n. Conversely, when task k is assigned
for local execution, implying it is allocated to the originating
device qk, we use another indicator βk(t) = 1. This setup is
governed by the following constraints:

C3 : αn
k (t) ∈ {0, 1}, k ∈ K(t), n ∈ N , t ∈ T . (3)

We assume that tasks from each device cannot be subdivided
into sub-tasks. Therefore, for any task k ∈ K(t), the offloading
must be directed to a single destination, either one of the PVs
or executed locally on the device itself. This is expressed by
the constraint:

C4 :
∑
n∈N

αn
k (t) + βk(t) = 1, k ∈ K(t), t ∈ T . (4)

This constraint ensures that for any given task k, either αn
k =

1 for PV n, indicating offloading to that node, or βk = 1
signifying local execution.

B. Offloading to PVs

Task Transmission Latency. When a device queues a task
request at the BS, it transmits only the task information rather
than the entire task payload. Given that these attribute files are
significantly smaller than the tasks themselves, the associated
transmission cost is minimal and can generally be disregarded.
Consistent with several previous studies [28]–[31], this work
also disregards the latency associated with transmitting results
and the offloading policy back to the devices. This decision
is based on the observation that the size of the resultant
data is generally much smaller than that of the initial tasks.
Furthermore, the communication duration between devices and
PVs is not considered in our analysis. The BS sequentially
processes the queued requests and executes a strategy to assign
the appropriate PV for each task allocation. According to
Shannon’s theory, the data transfer rate from device m to PV
n at time slot t can be calculated as follows:

rm,n(t) = Bn log

(
1 +

ph2
m,n(t)

σ2

)
, (5)

where Bn is allocated to represent the bandwidth of PV n and
p serves to denote the transmission power. The interaction
in terms of channel gain between device m and PV n at
time slot t, expressed as hm,n(t), is calculated utilizing the
Free Space Path Loss (FSPL) equation, as outlined in [32].
The equation is given by hm,n(t) = 20 log10(dm,n(t)) +
20 log10(f) + 20 log10

(
c
4π

)
, where dm,n(t) delineates the

Euclidean distance between m and n at time slot t, computed
by
√
(xm(t)− xn)2 + (ym(t)− yn)2, and f represents the

frequency of the channel. Furthermore, σ2 is employed to
denote the Gaussian noise power. Factoring in these variables,
the transmission latency for task k at the time slot t can be
explicated as follows:

T p,tr
k (t) =

∑
n∈N

dk
rqk,n(t)

· αn
k (t). (6)

Image Download Latency. Each PV n is allocated a
specific storage capacity, denoted by Dn, and the memory ca-
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pacity is denoted by Mn. This capacity and memory constraint
ensures that the total size of all containers hosted on a single
PV does not exceed Dn and the memory utilized by these
containers does not surpass Mn. To effectively regulate this
constraint, each PV employs a Least Frequently Used (LFU)
strategy for its container storage queue. In instances where
an incoming task requires a container absent from the current
queue and existing storage or memory proves inadequate, the
protocol mandates the removal of the least accessed container
within the queue. This measure is undertaken to reclaim nec-
essary space. This iterative process of eviction and reallocation
persists until the PV can feasibly accommodate the requisites
of the new container of arriving tasks. It is assumed that only
one image can be downloaded at one time, and thus each
node has an image download queue. If a new image needs to
be downloaded, it should be checked whether the remaining
storage and memory are enough for the image. If not, existing
images have to be removed until there is enough space. Then
the image can be added to this queue and try to download the
next image if required.

The term T queue
n (tarrivek ) represents the queuing latency at

PV n when the task k arrives. Consequently, the cumulative
image download latency incurred by processing task k is
shown as follows: T p,down

k (t) =∑
n∈N

(
jik

rNc,n(t)
+ T queue

n (tarrivek )

)
·αn

k (t) ·(1−xik
n (t)). (7)

Computation latency. The computation time is the pro-
cessing time of the task k on a designated PV, which can be
obtained as follows:

T p,com
k (t) =

∑
n∈N

fk
Fn
· αn

k (t), (8)

where fk is the CPU cycles requested by the task k and Fn is
the computing power of the PV n. We assume that the number
of threads available in the PV exceeds the number of tasks,
ensuring that the CPU frequency remains unaffected.

Energy cost. Given the task transmission latency and im-
age download latency, with ptrann and pcomn representing the
transmission power and computation power of PV n, we can
define the computation and the transmission energy cost for
task k as follows:

Ep,com
k (t) = T p,com

k (t)
∑
n∈N

pcomn · αn
k (t), (9)

Ep,tr
k (t) = (T p,tr

k (t) + T p,down
k (t))

∑
n∈N

ptrn · αn
k . (10)

C. Local Computing

In our architecture, tasks created locally on purpose-built
devices like cameras or traffic lights still necessitate container
downloads for execution. Given that these devices are tailored
for specific functions such as monitoring and traffic control,
they do not inherently possess the flexibility to manage diverse
tasks. Consequently, to address this limitation, containers are
employed to establish a uniform and isolated execution envi-
ronment, ensuring seamless operation across these specialized
devices, which will be more efficient.

Image Download Latency. The image download process in
the local computing scenario is subject to similar constraints
as those in the offloading to PVs scenario and we will not
repeat the explanation. If task k is assigned to be processed
locally, the download latency can be: T l,down

k (t) =(
jk

rNc,qk(t)
+ T queue

qk
(tarrivek )

)
· βk(t) · (1− xik

qk
(t)). (11)

Local Computation latency. The local computation latency
can be calculated as follows:

T l,com
k (t) =

fk
Fqk

· βk(t), (12)

where Fqk represents the computing power of the device that
generates task k.

Energy cost. Considering the computation latency and
image download latency, the energy required for computing
and transmitting task k can be defined as:

El,com
k (t) = T l,com

k (t)pcomqk
· βk(t), (13)

El,tr
k (t) = T l,down

k (t)ptrqk · βk(t). (14)

D. Problem Formulation

To simplify the formulation, we first identify the offloading
policy at time slot t, which is defined as the set α(t) =
{(αn

k (t), βk(t)) : k ∈ K(t),∀n ∈ N}. Given the offloading
policy set α(t) at time slot t, the total latency for executing
task k is represented as follows:

T total
k (t) = T p,tr

k (t) + (T p,down
k (t) + T l,down

k (t))

+ (T p,com
k (t) + T l,com

k (t)). (15)

Similarly, the total energy cost of task k execution can be
denoted as: Etotal

k (t) =

(Ep,tr
k (t) + Ep,com

k (t)) + (El,tr
k (t) + El,com

k (t)). (16)

We aim to minimize the overall task completion time and
energy cost from a long-term perspective. We aim to identify
the optimal strategy that minimizes the overall cost while
adhering to constraints. We define the weight parameter wt

to adjust the balance in optimization between time cost and
energy cost. Therefore, the problem is defined as follows:

min
α(t)

∑
t∈T

∑
k∈K(t)

(
wt · T total

k (t) + (1− wt) · Etotal
k (t)

)
s.t. C1− C4;

C5 : µn(t) +
∑

k∈K(t)

αn
k (t) ·mk ≤Mn, n ∈ N , t ∈ T ;

C6 : µm(t) +
∑

k∈K(t)

βk(t) · I[qk = m] ·mk ≤Mm,

m ∈M, t ∈ T ;
C7 : T total

k (t) + tarrivek ≤ tddlk , k ∈ K(t), t ∈ T . (17)

The constraints C1 to C4 have been previously explained.
Constraint C5 specifies that each PV has a defined maximum
memory capacity allocated for tasks and that the container
does not utilize any memory before starting a task, allowing
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the memory cost of the container to be disregarded. Con-
sequently, the memory used by tasks offloaded to the PV
must not exceed this maximum capacity. Similarly, constraint
C6 imposes identical limits on devices, ensuring that the
memory capacity is not exceeded by the tasks they handle.
Therefore, the total memory used by ongoing processing
containers on any PV n or device m must not exceed this
limit. As for constraint C7, each task must be completed by
its specified deadline. The problem is formulated as a Mixed-
Integer Nonlinear Programming (MINLP) problem, which is
NP-hard. In this scenario, by carefully selecting the duration of
each time slot, the probability of transitioning from one state to
another based on resource demand remains nearly constant for
a significant period and does not follow a uniform distribution
[33]. Furthermore, the task arrival process and environmental
updates exhibit a memoryless property, meaning that past
events do not influence future outcomes. Given these char-
acteristics, the scenario can be effectively represented using
a Markov Decision Process (MDP) framework and addressed
with RL techniques.

IV. REINFORCEMENT LEARNING SOLUTION

In this section, we start by defining the state space, action
space, and reward function for the proposed problem. We
then propose a policy gradient-based RL algorithm to address
the problem. Additionally, to better capture the relationships
between nodes, we introduce a transformer unit to embed the
node features. Moreover, we utilize an LSTM component to
incorporate the task history and patterns as input, predicting
the number of tasks for the next step. We will first introduce
the algorithm settings and then detail how the algorithm
operates to solve our problem.

A. State, Action, and Reward Definition

The main components of RL are the agent and the VEC
environment. The agent makes scheduling decisions. To train
an agent, the state, action, reward, and policy are needed.

State Space. A state fully encapsulates the VEC environ-
ment, characterized by three key elements: computing nodes
(encompassing both PVs and devices), user-requested tasks,
and the history of task arrivals. To deeply analyze each
node’s dependency and consider computational resources, we
partition the state of PVs and device nodes into two aspects:
resource information and image information.
Node Information. The Node information encapsulates the
resources and the locations of both the device nodes and
the PVs, serving as edge nodes. The resources of each PV
are characterized by its memory and storage capacities at
time slot t, as well as by its CPU frequency, bandwidth,
transition power, and computation power. These characteristics
are collectively defined as follows:

snodet = {µ1(t), µ2(t), · · · , µM (t),

d1(t), d2(t), · · · , dM (t),

x1(t), x2(t), · · · , xM (t),

y1(t), y2(t), · · · , yM (t),

P tr
1 , P tr

2 , · · · , P tr
M , P com

1 , P com
2 , · · · , P com

M ,

B1, B2, · · · , BM , F1, F2, · · · , FM}. (18)

where dn(t) = Dn −
∑

i∈I xi
n(t) × si and dm = Dm −∑

i∈I xi
m(t)× si.

Image Information. The image information, which includes
both the download duration of images and image storage on
each PV or device at a specific time slot, is crucial for the
algorithm and significantly impacts the allocation of tasks to
specific PVs. The download time for images required by task
k is denoted by T p,down

k (t) for PVs and T l,down
k (t) for local

devices. This parameter is essential for managing image data
effectively and plays a key role in enhancing task scheduling
performance. Additionally, the distribution of images across
nodes holds significant importance. We represent the state
of image download time with the notation sdown

t , which is
defined as follows:

sdown
t = {T p,down

1 (t), T p,down
2 (t), · · · , T p,down

Kt
(t),

T l,down
1 (t), T l,down

2 (t), · · · , T l,down
Kt

(t)}. (19)

For image storage information, given the limited types of
images, we track whether each node possesses these images.
This is represented by xi

n(t), as previously mentioned. Con-
sequently, we obtain:

sit =



x1
1(t) x2

1(t) · · · xI
1(t)

x1
2(t) x2

2(t) · · · xI
2(t)

...
...

. . .
...

x1
N (t) x2

N (t) · · · xI
N (t)

...
...

. . .
...

x1
M (t) x2

M (t) · · · xI
M (t)


. (20)

Thus, the structure of the image information is outlined as
follows:

simage
t = sdown

t ⊕ sit. (21)

Task Information. The task state encompasses the necessary
images for execution, as well as the resources requested by the
task and constrains. Consequently, the task state is represented
as follows:

staskt = ∪k∈K(t){dk,mk, fk, ik, t
arrive
k , tddlk }. (22)

History Information. The historical information of time slot t is
represented by shist , which records the number of task arrivals
from several preceding time slots. We analyze these data using
the lag time method, which entails looking back over several
time slots. We then use an LSTM model to make predictions
based on this historical context. In our simulation, the number
of look-back steps is set to 5, following the methodology
described in [34]. Combine all of the information, we can
get the state:

st = snodet ⊕ simage
t ⊕ staskt ⊕ shist . (23)

Action Space. The policy allocates tasks to PVs or the local
device, taking into account the container configurations within
them. It determines whether tasks should be processed locally
or offloaded to a PV. Accordingly, the action space includes
all PVs and devices, represented as the union of the set of
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PVs N and the requesting device represented as follows:

at ∈ (N ∪M)Kt . (24)

Reward Function. Defining an appropriate reward func-
tion is critical for the success of RL algorithms. Given that
offloading policies seek to balance energy consumption and
execution time, relying solely on total cost may result in an
unstable training process. Therefore, both the expected and
actual cost of a task are incorporated into the reward function,
which can be expressed as follows:

rt = wt ·
(
T total
ideal(t)−

∑
k∈K(t)

T total
k (t)

)
+ (1− wt) ·

(
Etotal

ideal(t)−
∑

k∈K(t)
Etotal

k (t)

)
, (25)

where T total
ideal(t) =

∑
k∈K(t) fk/Fmax defines the ideal latency

for task execution in time slot t and Fmax represents the
maximum CPU frequency across all PVs and devices. Task
completion times close to T total

ideal(t) yield higher rewards,
reflecting efficiency in time utilization. Similarly, the ideal
energy cost, Etotal

ideal(t) = T total
ideal(t) × pcommin, is calculated

using pcommin, the lowest power for computation across the PVs
and devices. The reward decreases when the actual energy
consumption exceeds Etotal

ideal(t), emphasizing the importance
of minimizing energy use to enhance overall efficiency.

B. The Sequence-Aware Task Scheduling (SATS) Algorithm

The policy gradient-based SATS algorithm is introduced
in this subsection, including policy optimization, transformed
branch, and LSTM branch.

Overview. The architecture of the SATS algorithm is il-
lustrated in Figure 3. The algorithm begins by observing the
states of PVs, devices, and tasks from the environment. These
features are processed through three distinct branches. The
Transformer branch, designed to capture complex dependen-
cies, takes snodet ⊕ simage

t as input and produces stranst ,
as detailed in the Algorithm 1. A fully connected branch
focuses on immediate state representation, receiving staskt

as input and generating sfct . Meanwhile, the LSTM branch,
which is used for recognizing temporal patterns, processes
shist and outputs slstmt . The outputs from these branches are
concatenated with a copy of snodet ⊕ simage

t to form the
merged state s′t, which is then input into the policy network
to determine the optimal scheduling actions. Actions taken by
the policy network yield rewards, which serve as feedback for
subsequent decision-making. The core of the SATS algorithm
lies in policy optimization, which is facilitated through a policy
gradient method. This method optimizes the policy directly by
maximizing the expected return. The policy gradient method is
utilized for its equilibrium between effectiveness and computa-
tional efficiency, improving learning stability and performance
through measured policy adjustments, thus making it an apt
selection for the SATS algorithm.

Policy Optimization. Policy gradient methods are designed
for explicitly optimizing policies by evaluating the gradient of
the expected rewards concerning policy parameters. Specifi-
cally, Actor-Critic algorithms, a subset of policy gradient tech-

Algorithm 1: The SATS Algorithm.

1 Initialize policy parameters θ and value parameters ϕ;
2 Initialize the sampling policy πθold with θold ← θ;
3 for Episode = 1, 2, · · · do
4 Initialize replay memory D ← ∅;
5 Reset environment;
6 // Sampling process;
7 foreach time slot t ∈ T do
8 Get current state st;
9 stranst ← Transformer(snodet ⊕ simage

t );
10 sfct ← FC(staskt );
11 slstmt ← LSTM(shist );
12 Get the

s′t = stranst ⊕ sfct ⊕ slstmt ⊕ (snodet ⊕ simage
t );

13 Select action at according to πθold(at|s′t);
14 Execute action at and get the reward rt;
15 Get the next state st+1;
16 D ← D ∪ (s′t,at, rt, s

′
t+1);

17 // Using trajectory D to train networks;
18 for epoch = 1, 2, · · · do
19 Sample a batch B from D to update parameters;
20 Calculate LPPO(θ) by Eqn. (33);
21 Update actor parameter θ using Adam;

Calculate LCRITIC(ϕ) by Eqn. (32);
22 Update critic parameter ϕ using Adam;

23 Update θold ← θ;

24 return Actor network πθ and Critic network Vϕ;

niques, merge the principles of policy enhancement (executed
by the “Actor”) with those of value function approximation
(executed by the “Critic”) [35]. In this structure, the Critic’s
role involves approximating the value function and guiding the
Actor in making policy updates.

Within the workings of policy gradient methods, accurately
estimating the policy gradient is crucial, as it feeds into a
stochastic gradient ascent algorithm. Central to this process
is the advantage function, denoted by Aπ(s′t,at), which
quantifies the relative merit of each action by assessing how
it compares to the average action for a particular state. This
function is instrumental in distinguishing the potential efficacy
of different actions and is computed as follows:

Aπ(s′t,at) = Qπ(s′t,at)− V π(s′t), (26)

where the value function V π(s′t) represents the expected return
for an agent starting in merging state s′t and following policy
π. This function is formulated as:

V π(s′t) = Eπ[Gt|St = s′t], (27)

where Gt =
∑∞

l=0 γ
lrt+l and γ ∈ (0, 1] is a discount factor.

The state-action value function Qπ(s′t,at) is defined as:

Qπ(s′t,at) = Eπ[Gt|St = s′t, At = at]. (28)

Policy-based RL algorithms operate by calculating an esti-
mator for the policy gradient. The most widely utilized form
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Fig. 3. Overview of the SATS algorithm. The SATS framework consists of an actor network and a critic network. The actor network incorporates a transformer
branch, a linear neural network branch, and an LSTM branch. Essential operations of the algorithm encompass observing the system state, generating actions,
calculating rewards, and updating the network.

of this gradient estimator is as follows:

∇LPG(θ) = Êt

[
∇θ log πθ(at|s′t) · Â(s′t,at)

]
. (29)

In this context, πθ denotes a stochastic policy, and Ât serves
as an estimator for the advantage function at time t. How-
ever, employing LPG(θ) to optimize over several steps using
the identical trajectory may lead to disproportionately large
updates in the policy, which is typically not favorable. To
mitigate this concern, the Generalized Advantage Estimator
(GAE) [36] was introduced as a more refined estimator for
advantages, calculated as follows:

Âθold(s
′
t,at) =

∑∞

l=0
(γλ)l · δt+l. (30)

In this equation, λ is the GAE parameter that critically
influences the balance between bias and variance, serving
to decrease variance and enhance the speed of the learning
process. The term

δt = rt + γVϕ(s
′
t+1)− Vϕ(s

′
t) (31)

represents the Temporal Difference (TD) error at time step
t, where Vϕ(s

′
t) denotes the value function approximated by

a Deep Neural Network (DNN). Here, the critic network is
updated by minimizing the loss defined as:

LCRITIC(ϕ) = Êt

[
(Vϕ(s

′
t)− V̂t)

2
]
, (32)

where V̂t can be obtained as V̂t =
∑∞

l=0 γ
l · rt+l.

Furthermore, to avoid the pitfalls of local optima during
training and sampling, we utilize Proximal Policy Optimiza-
tion (PPO) [37]. PPO introduces a clipped surrogate objective
in place of LPG(θ), characterized as

LPPO(θ) = Êt

[
min

(
rat(θ) · Âθold(s

′
t,at),

clip(rat(θ), 1− ϵ, 1 + ϵ) · Âθold(s
′
t,at)

)]
,

(33)

where rat(θ) is the policy probability radio defined as

rat(θ) =
πθ(at|s′t)
πθold(at|s′t)

(34)

and ϵ is a hyperparameter, e.g. ϵ = 0.1. The function
clip(rat(θ), 1 − ϵ, 1 + ϵ) is designed to constrain the value
of rat(θ), which represents the ratio of the new policy to
the old policy, within a specific range defined by 1 − ϵ and
1 + ϵ. If rat(θ) falls below 1 − ϵ, the function adjusts it
to 1 − ϵ; if rat(θ) exceeds 1 + ϵ, it is reduced to 1 + ϵ.
Otherwise, if rat(θ) is already within the acceptable range, its
value remains unchanged. This clipping mechanism moderates
policy updates, preventing excessively large adjustments that
could lead to instability in the learning process.

Attention-based Model. To tackle the dynamic and com-
plex task scheduling challenges within the container-based
VEC ecosystem, our model employs the Transformer architec-
ture for embedding features of PVs and devices. This approach
moves away from directly utilizing device features as state
vectors, enabling a more refined representation of the VEC
system state. Unlike Convolutional Neural Network (CNN) or
Recurrent Neural Network (RNN), the Transformer employs
a unique self-attention mechanism, demonstrating stable and
effective representation capabilities [38], [39]. This mechanism
adeptly captures and analyzes intricate dependencies and in-
teractions among the features of PVs’ computing resources, a
crucial aspect for effectively addressing the diverse scheduling
challenges posed by varying computational resources and
unique image storage configurations of PVs. In our model,
we define query matrix Q ∈ RM×dmodel , representing infor-
mation extracted from the current system state to capture the
immediate computational resource demands; K ∈ RM×dmodel

be the key matrix, reflecting the historical data of PVs’ compu-
tational resource characteristics; and V ∈ RM×dmodel be the
value matrix, encoding the resource configuration information
corresponding to the keys. Here, M is the number of PVs and
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devices, and dmodel are the corresponding PVs and device
state feature dimensions. The outputs of self-attention are

Attention(Q,K,V ) = softmax
(

QKT

√
dmodel

)
V , (35)

where the scalar 1/
√
dmodel is applied to mitigate the risk of

the softmax function entering regions with minimal gradients.
Following this, we detail the multi-head attention mechanism
as outlined below:

MultiHead(Q,K,V ) = Concat(head1, · · · , headh)WO,

headi = Attention(QWQ
i ,KWK

i ,V W V
i ). (36)

Here, WO represents the output weight matrix and h denotes
the number of attention heads. Each head headi has its
trainable weight matrices WQ

i , WK
i , and W V

i for Q, K,
and V , whose size is in Rdmodel×(dmodel/h).

The position-wise feed-forward network (FFN) represents
a fundamental component of the Transformer architecture,
comprising two linear transformations with an intervening
ReLU activation function. The dimensions of both the input
and output are denoted by dmodel, while the internal layer,
characterized by the dimensionality dff , serves as a hyperpa-
rameter. Specifically, the FFN is defined as follows:

FFN(x) = max(0,xW1 + b1)W2 + b2, (37)

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel are the
weights, and b1 ∈ Rdff and b2 ∈ Rdmodel are the biases.

The same linear transformations are applied consistently
across different positions within the sequence. It is important
to highlight that position encoding is utilized to incorporate
the sequence order information as follows:

PE(pos, 2i) = sin(pos/100002i/dmodel),

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel).
(38)

Time sequence prediction. The LSTM branch is designed
to strengthen the memory ability of the SATS algorithm
since it allows the agent to incorporate a large amount of
network measurement history into its state space to capture
the long-term temporal dependencies of actual system dynam-
ics. Specifically, the LSTM branch processes a sequence of
historical task numbers as its input and predicts the task count
for the upcoming time slot as its output. The LSTM branch
is tailored to enrich information capture and enhance expres-
siveness for historical time slots, affording subsequent layers
more immediate access to temporal data. When it comes to
scheduling decisions, recognizing the temporal patterns of task
arrivals is crucial, without being limited by the construction
sequence of container images. This implies that scheduling
should not depend on the sequential or adjacent relationships
between images. LSTMs present a viable solution [40], [41].
By modeling interactions between pairs of features as the inner
products of latent vectors, LSTMs can grasp complex temporal
patterns without relying on a predefined sequence of container
images. This attribute of LSTMs is particularly beneficial in
scenarios where the timing and interplay of tasks are vital, yet
not strictly bound to a specific operational sequence.

C. Computational Complexity Analysis
The time complexity analysis of the SATS algorithm, as

presented in Algorithm 1, primarily encompasses four steps:
system state processing, action selection, reward computation,
and network updating. In the first step, we obtain the system
state as defined in Eqn. (23). Since the state encompasses
characteristics from M PVs, Kt tasks at time t, I images,
and look-back steps of length L, the time complexity for
retrieving this state is calculated as O(7M+I ·M+6Kt+L).
Second, the action is selected according to the policy network.
The time complexity of this process depends on the network
size and involves a forward pass with bounded complexity
through three distinct components—Transformer, LSTM, and
the three-layer fully connected network—each contributing a
small cost, which can be considered constant and denoted
as Ot [42]. Third, execute action at and receive reward rt
according to Eqn. (25). The complexity of reward calculation
is O(Kt), as each task is assigned to a single device, and the
computation for each task’s time and energy is constant.

To evaluate the complexity of the network update, the
distinct parts of the state are input into several neural net-
work structures. Since the computational complexity at each
time step is primarily influenced by the structure of these
neural networks, the overall update complexity can be ex-
pressed as O(2(Ntrans + Nfc + Nlstm + Nπ + Nv)). Here,
Ntrans = O(htran(Mdmodel)

2dmodel) accounts for the Trans-
former’s self-attention mechanism with htran attention heads,
sequence length Mdmodel, and embedding dimensionality
dmodel. Nlstm = O(L(4nhL + 4n2

h)) captures the LSTM
layers’ complexity, where L is the look back steps and nh is
the number of hidden units. Nfc = O(6Ktnfc) represents the
complexity of the fully connected layers, which have a simple
structure with 3 hidden layers, where nfc is the number of
neurons per hidden layer. Lastly, the computational complexity
of the policy network, Nπ = O((2(7M+I·M)+6Kt+L)·nπ),
reflects its simple structure with two hidden layers, where nπ

is the number of neurons per hidden layer. The value network
has a similar structure, and its complexity is analogous to
that of the policy network. In each episode, the algorithm
collects experiences over |T | time steps and then performs
training. The total complexity for experience collection is
O(|T |× (7M + I ·M +7Kt +L). During the training phase,
for K epochs, the computational complexity per epoch is:
O(B×(Ntrans+Nfc+Nlstm+2Nπ+Pθ)) where B is the batch
size, Pθ is the numbers of parameters in the networks. In this
setting, most parameters remain constant, so the computational
complexity of the algorithm is determined by the complexity
of the training parameters, as well as the number of episodes
E and the number of time steps |T | per episode.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of SATS by
outlining the experimental setup, followed by a presentation
and analysis of the experimental findings.

A. Experimental Settings
Parameter settings. To assess the effectiveness of our

proposed algorithms, we implemented a simulation environ-
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(a) Task Arrival Pattern 1 (b) Task Arrival Pattern 2 (c) Task Arrival Pattern 3

(d) Task Arrival Pattern 4 (e) Task Arrival Pattern 5 (f) Task Arrival Pattern 6

Fig. 4. Trend of total time cost per task in a single time slot across various task arrival patterns. This includes 6 PVs (N = 6) and 7 devices (M = 7),
employing a weight factor of wt = 1.

ment in Python. This environment simulates PVs entering and
exiting a generic parking lot with 50 spaces, behaving in a
random and dynamic fashion within a 100m × 100m area.
Each PV’s storage capacity is randomly assigned within the
range of 5 GB to 10 GB, and their available bandwidth varies
from 60 Mbps to 90 Mbps. The CPU frequencies of the PVs
are randomly selected to fall within the 0.8 GHz to 1.2 GHz
range, with memory allocations for the PVs varying from 2
GB to 14 GB. This variation reflects the heterogeneity of the
devices, which are distributed randomly across the simulation.
Meanwhile, local devices feature CPU frequencies are set
between 0.1 GHz and 0.5 GHz, with memory allocations
ranging from 256 MB to 2 GB. The transmission power is set
at 23 dBm, and the noise power spectral density is fixed at -
174 dBm/Hz. Wireless communication is conducted via sensor
nodes and a single edge node, with a transmission bandwidth
spectrum ranging from 24 GHz to 39 GHz. Tasks are generated
at random, with sizes varying from 10 KB to 10 MB.

Simulation of Task Arrival Patterns. Task arrival trends
are modeled using a Gaussian distribution, characterized by
predefined mean (µ) and standard deviation (σ) values. These
parameters, chosen from five unique mean values and two stan-
dard deviation options, generate diverse task density patterns
across a single episode of 200 time slots. For every episode,
the simulation constructs a probability density function (PDF)
from the designated mean (µ) and standard deviation (σ), de-
picting the distribution of task arrivals during that period. The
resulting PDF values are scaled and adjusted by introducing
a random noise factor between 0.8 and 1.2, enhancing the

variability in task generation. This creates time slots with
realistically distributed tasks, mirroring potential real-world
scenarios. Each pattern equally contributes to the training
dataset, ensuring uniform exposure in the simulation. After
generation, the data are shuffled to evaluate the algorithm’s
robustness in a mixed data environment, providing a compre-
hensive test of its performance under varied conditions.

B. Baselines Description.

To benchmark the performance of our approach, we imple-
ment and evaluate several baseline algorithms.

• Greedy Selection (Greedy). It adopts a greedy strategy
for task distribution to either PVs or local execution. It
evaluates the available options (available PVs or local
processing) based on key performance indicators such
as CPU frequency, transmission power, computational
capacity, and download delay. The algorithm determines a
composite cost metric that encapsulates energy consump-
tion and time expenditure, aiming to identify the most
efficient PV or local device that offers rapid computation
with minimal energy usage. This integrated assessment
ensures that the selected node optimizes both speed and
energy efficiency for task execution. Choices are ranked
based on this metric, with the algorithm assigning tasks to
the option that minimizes energy and time costs, thereby
optimizing resource utilization.

• Deep-Q Network (DQN) [43]. It is a Deep RL algorithm
that combines DNN with Q-learning to learn optimal
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policies in large state and action spaces. DQN is based
on the principle of value iteration, where an agent learns
to approximate the optimal action-value function through
interaction with the environment.

• Proximal Policy Optimization (PPO) [37]. It is an RL
algorithm that aims to optimize policies efficiently and
stably. It belongs to the class of actor-critic algorithms
and is particularly known for its simplicity and effec-
tiveness. PPO operates by iteratively updating policy
parameters based on estimations of the expected return,
using a clipped surrogate objective function to maintain
a balance between exploration and exploitation.

C. Performance Across Diverse Temporal Patterns

Figure 4 illustrates the trend of total time cost per task
in a single time slot across various task arrival patterns,
incorporating scenarios with 6 parked vehicles (PVs) and 7
devices, and accounting for a weight factor (wt) of 1. Tasks are
generated across a sequence of 200 time slots per episode, and
the plotted data correspond to the average time costs accrued
over the final 1,000 episodes. This analysis emphasizes long-
term performance to provide a thorough evaluation of the
system’s efficiency. The task arrivals are categorized into six
distinct patterns. As illustrated in Figure 4(a) - 4(f), each cor-
responds to one of the task arrival patterns (Patterns 1 through
6). SATS demonstrates superior performance by consistently
achieving lower total costs across most time slots and patterns
compared to competing methods. This performance advantage
highlights our algorithm’s effectiveness in managing time-
related costs across diverse task arrival patterns and operational
conditions. The greedy algorithm, while competitive in certain
slots, generally incurs a higher cost. The shaded regions
represent the confidence intervals, indicating the variability
and reliability of the mean cost values. In Pattern 1, as
shown in Figure 4(a), SATS demonstrates significant time cost
efficiency, particularly in the middle time slots. A similar trend
is observed in Patterns 2 and 3, as illustrated in Figure 4(b)
and 4(c), where SATS outperforms the alternatives, especially
during periods of peak task arrivals. Figure 4(d) and 4(e), rep-
resenting Patterns 4 and 5, showcase the robustness of SATS
in handling fluctuating costs, with the confidence intervals
for our method being narrower than those for other methods,
suggesting greater stability. Finally, Figure 4(f) highlights
Pattern 6, where SATS shows superior performance with a
more pronounced difference from the other methods. This
is particularly noteworthy during the latter time slots, where
SATS appears to adapt more effectively to the changes in task
patterns. Overall, SATS not only yields a lower mean cost but
also displays consistency and reliability across various task
arrival patterns, emphasizing its suitability for dynamic and
uncertain environments.

D. Performance Analysis on Varying Numbers of PVs

Table II presents the performance metrics of three baseline
algorithms compared with SATS. The comparison is conducted
over different quantities of PVs, with a constant device number
M − N = 10. Metrics include the average time cost per

TABLE II
PERFORMANCE METRICS FOR DIFFERENT METHODS GIVEN DIFFERENT

NUMBERS OF PVS, WHERE DEVICES NUMBER = 10, PENALTY = 100, AND
WEIGHT FACTOR wt = 0.5

Algorithm PVs: 5 PVs: 10 PVs: 15 PVs: 20

Time Cost per Task

Greedy 515.4988 585.9003 561.4906 497.3194
DQN 191.0666 26.4591 194.5597 29.8914
PPO 148.8996 22.5706 45.3104 24.0789
Ours 26.5569 20.3930 32.4720 19.9474

Energy Cost per Task

Greedy 1916.8043 1917.4010 1911.6688 1933.0821
DQN 7807.2273 7448.5881 3591.5511 7913.0113
PPO 7301.3018 8335.6894 4738.0762 8687.1297
Ours 9129.4580 5988.9614 10677.5660 5403.5835

Reward per Task

Greedy -863.804 -888.897 -857.785 -852.094
DQN -284.118 -119.356 -288.951 -122.570
PPO -241.902 -115.576 -137.975 -116.840
Ours -119.670 -113.287 -125.544 -111.979

task, the energy cost per task, and the reward per task over
1, 000 episodes. These metrics are critical for assessing the
effectiveness of SATS in a VEC network setup. Lower time
and energy costs indicate improved performance, while a
higher reward signifies a more optimal balance between time
and energy expenditures.

The greedy algorithm incurs the highest time cost per
task, notably with 515.50 and 585.90 for 5 and 10 PVs,
respectively. In stark contrast, SATS maintains the lowest
time cost across varying PV numbers, indicative of superior
efficiency in task management. The underlying issue with the
greedy approach is its narrow focus on options that ostensibly
offer the quickest completion and minimal energy usage,
leading to a predisposition towards local devices deemed
energy-efficient. Such a strategy neglects critical factors like
download costs and device workload, which can substantially
decelerate computation. As a result, even when an available
PV could offer better performance than a local device, the
greedy algorithm’s disregard for these aspects compromises its
decision-making efficacy. Conversely, SATS evaluates the time
constraints of each task, adopting a more holistic approach to
ensure optimal task distribution within the defined constraints,
thereby optimizing overall efficiency.

For energy cost per task, SATS surpasses other approaches
in efficiency, with the exception of the greedy method, due
to the reasons previously discussed. This efficiency becomes
particularly evident at higher PV counts, where our algorithm
significantly reduces energy consumption, achieving its lowest
at 5403.58 for 20 PVs. This trend emphasizes the inherent
scalability and energy optimization of SATS, showcasing its
ability to adapt to different network scales while effectively
balancing energy consumption with time efficiency.

For reward per task, negative values serve as indicators of
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TABLE III
BREAKDOWN OF TIME COST COMPARISON FOR DIFFERENT METHODS

GIVEN DIFFERENT NUMBERS OF PVS, WHERE DEVICES NUMBER = 10 AND
WEIGHT FACTOR wt = 0.5.

Algorithm PVs: 5 PVs: 10 PVs: 15 PVs: 20

Computation Time Cost per Task

Greedy 534.13554 584.5138 531.2083 495.8514
DQN 157.9777 2.6284 176.4882 5.7115
PPO 126.8658 3.3917 30.6617 3.3863
Ours 3.5621 2.7880 3.3978 2.0997

Transmission Time Cost per Task

Greedy 1.2420 1.3267 1.3077 1.4285
DQN 0.8654 1.4201 0.7152 1.1923
PPO 1.0532 0.8174 1.0917 0.8133
Ours 0.4096 1.3338 0.8215 1.2546

Download Time Cost per Task

Greedy 0.0994 0.0599 0.0636 0.0396
DQN 32.2236 22.4106 19.2373 22.9877
PPO 20.9806 18.3615 13.5570 19.8793
Ours 22.5851 16.2711 28.2528 16.5930

achieving an optimal balance between time and energy expen-
ditures, as previously elucidated. SATS consistently exhibits
the maximum values, underscoring its superior capacity to
optimize computational tasks in terms of energy and time
efficiency, affirming its comprehensive effectiveness.

E. Time Cost on Different Numbers of PVs

Table III provides an in-depth analysis of time costs as-
sociated with baselines, given a fixed number of devices
(N−M = 10) and a weight factor of wt = 0.5, across varying
numbers of PVs. By breaking down the overall time cost
into three distinct components: Computation time, download
time, and transmission time, the table effectively illustrates
the efficiency and optimization aspects of each method in a
granular manner.

In terms of computation time, SATS consistently out-
performs competitors across all PV configurations, show-
casing exceptional efficiency. Notably, at the configuration
with 10 PVs, the computation time of SATS is significantly
lower—nearly one-eighth of the next-best competitor, DQN.
This substantial reduction in computation time is attributed
to SATS’s ability to effectively assess and utilize the com-
puting resources of different PVs, which allows it to make
more informed offloading polices that harmoniously balance
image download demands with computational capabilities.
Furthermore, the transmission time results reveal a strategic
choice within the SATS algorithm to not prioritize minimal
transmission times. Instead, it opts for a deliberate trade-
off, enhancing overall time cost effectiveness. By accepting
longer initial transmission periods, SATS strategically focuses
on reducing computation time through more precise task
offloading. This approach underscores a nuanced understand-
ing of PVs’ computational resource variations and leverages

more adeptly than competing methods like PPO and DQN.
Additionally, the average performance of STAS in download
time illustrates its capability to achieve shorter computation
times by striking a balance in the downloading of container
sequences. This method significantly boosts the efficiency
of task downloads, demonstrating an optimized management
of both download and computation times. By achieving this
balance, SATS not only reduces total operational time but also
ensures that task downloads are managed in the most efficient
way possible, resulting in significant enhancements in overall
system performance. This strategy enhances the efficiency
of computational resources and container-based scheduling,
showcasing the capability of STAS to streamline network
operations effectively.

Across all metrics, SATS surpasses competing strategies,
underscoring its robustness and superior performance in man-
aging tasks within a vehicular network environment. The
results highlight the capacity of STAS to significantly improve
operational efficiency in practical applications, marking a
substantial contribution to advancements in vehicular compu-
tational frameworks. This effectiveness not only demonstrates
its technical excellence but also its potential applicability in
enhancing real-world vehicular systems.

VI. CONCLUSION

In this paper, we presented the SATS algorithm, a policy
gradient-based deep RL approach designed to optimize task
offloading in a VEC scenario that leverages parked vehicles
as computational nodes. Integrating parked vehicles with con-
tainer technology extends the existing MEC infrastructure and
enhances load balancing, auto-healing, resource isolation, and
security features. To capture the complex structure of com-
puting nodes and patterns in time-series tasks, such as peak
hours and congestion, SATS employs Transformer and LSTM
to enhance task scheduling precision and overall performance.
The experimental evaluations, conducted through numerous
numerical comparisons with three baseline algorithms, demon-
strate the significant advantages of SATS in reducing delays
and energy consumption across the network.

In the future, several directions could extend this work.
First, vehicle modeling can be improved by incorporating sud-
den vehicle departures and analyzing daily parking behavior
records, such as recording and predicting the frequency and
duration of parking, peak parking times, and the number of
vehicles entering and leaving different locations to improve
model robustness. Second, we plan to use real datasets (e.g.,
real task arrival sequences, practical PV energy costs, and real-
world computational tasks) to make our experimental results
more convincing. Third, we aim to extend our work to multiple
base stations, covering larger areas, which will allow us to
evaluate the model’s scalability and distributed nature in highly
dynamic IoV environments.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 62202055, the National Key R&D Program of

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3554595

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 28,2025 at 02:53:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

China under Grant No. 2022YFE0201400, the Start-up
Fund from Beijing Normal University under Grant No.
310432104/312200502510, the Internal Fund from BNU-
HKBU United International College under Grant No.
UICR0400003-24, the Project of Young Innovative Tal-
ents of Guangdong Education Department under Grant No.
2022KQNCX102, and the Interdisciplinary Intelligence Super-
Computer Center, Beijing Normal University (Zhuhai).

REFERENCES

[1] X. Huang, R. Yu, S. Xie, and Y. Zhang, “Task-container matching game
for computation offloading in vehicular edge computing and networks,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10,
pp. 6242–6255, 2020.

[2] K. Nguyen, S. Drew, C. Huang, and J. Zhou, “Collaborative container-
based parked vehicle edge computing framework for online task offload-
ing,” in 2020 IEEE 9th International Conference on Cloud Networking
(CloudNet). IEEE, 2020, pp. 1–6.

[3] X. Huang, P. Li, and R. Yu, “Social welfare maximization in container-
based task scheduling for parked vehicle edge computing,” IEEE Com-
munications Letters, vol. 23, no. 8, pp. 1347–1351, 2019.

[4] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[5] T. Lu, F. Zeng, J. Shen, G. Chen, W. Shu, and W. Zhang, “A scheduling
scheme in a container-based edge computing environment using deep
reinforcement learning approach,” in 2021 17th International Conference
on Mobility, Sensing and Networking (MSN), 2021, pp. 56–65.

[6] W. Fan, M. Hua, Y. Zhang, Y. Su, X. Li, B. Tang, F. Wu, and Y. Liu,
“Game-based task offloading and resource allocation for vehicular
edge computing with edge-edge cooperation,” IEEE Transactions on
Vehicular Technology, vol. 72, no. 6, pp. 7857–7870, 2023.

[7] X. Huang, R. Yu, D. Ye, L. Shu, and S. Xie, “Efficient workload
allocation and user-centric utility maximization for task scheduling in
collaborative vehicular edge computing,” IEEE Transactions on Vehicu-
lar Technology, vol. 70, no. 4, pp. 3773–3787, 2021.

[8] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy for vehicle
assisted mobile edge computing systems,” IEEE Wireless Communica-
tions Letters, vol. 8, no. 2, pp. 420–423, 2018.

[9] Y. Zhang, C.-Y. Wang, and H.-Y. Wei, “Parking reservation auction for
parked vehicle assistance in vehicular fog computing,” IEEE transac-
tions on vehicular technology, vol. 68, no. 4, pp. 3126–3139, 2019.

[10] X. Huang, P. Li, R. Yu, Y. Wu, K. Xie, and S. Xie, “Fedparking: A
federated learning based parking space estimation with parked vehicle
assisted edge computing,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 9, pp. 9355–9368, 2021.

[11] Y. Ren, X. Chen, S. Guo, S. Guo, and A. Xiong, “Blockchain-based
vec network trust management: A drl algorithm for vehicular service
offloading and migration,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 8, pp. 8148–8160, 2021.

[12] S.-s. Lee and S. Lee, “Resource allocation for vehicular fog computing
using reinforcement learning combined with heuristic information,”
IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 450–10 464,
2020.

[13] Z. Zou, X. Yan, Y. Yuan, Z. You, and L. Chen, “Attention mechanism
enhanced lstm networks for latency prediction in deterministic mec
networks,” Intelligent Systems with Applications, vol. 23, p. 200425,
2024.

[14] T.-V. Nguyen, N.-N. Dao, W. Noh, S. Cho et al., “User-aware and
flexible proactive caching using lstm and ensemble learning in iot-mec
networks,” IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3251–
3269, 2021.

[15] L. Xu, M. Qin, Q. Yang, and K.-S. Kwak, “Learning-aided dynamic
access control in mec-enabled green iot networks: A convolutional
reinforcement learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 71, no. 2, pp. 2098–2109, 2022.

[16] Z. H. Meybodi, A. Mohammadi, M. Hou, E. Rahimian, S. Heidarian,
J. Abouei, and K. N. Plataniotis, “Multi-content time-series popularity
prediction with multiple-model transformers in mec networks,” Ad Hoc
Networks, vol. 157, p. 103436, 2024.

[17] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang, “Mdp-based
task offloading for vehicular edge computing under certain and uncertain
transition probabilities,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 3296–3309, 2020.

[18] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[19] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10 660–10 675, 2017.

[20] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[21] W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, “Joint task offloading and
resource allocation for multi-access edge computing assisted by parked
and moving vehicles,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 5, pp. 5314–5330, 2022.

[22] S. Ge, M. Cheng, X. He, and X. Zhou, “A two-stage service migration
algorithm in parked vehicle edge computing for internet of things,”
Sensors, vol. 20, no. 10, p. 2786, 2020.

[23] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-a-service
at the edge: Trade-off between energy efficiency and service availability
at fog nano data centers,” IEEE wireless communications, vol. 24, no. 3,
pp. 48–56, 2017.

[24] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[25] A. Ahmed and G. Pierre, “Docker container deployment in fog com-
puting infrastructures,” in 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2018, pp. 1–8.

[26] S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz,
“Towards container orchestration in fog computing infrastructures,” in
2017 IEEE 41st Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2. IEEE, 2017, pp. 294–299.

[27] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Joint resource
overbooking and container scheduling in edge computing,” IEEE Trans-
actions on Mobile Computing, pp. 1–15, 2024.

[28] W. Feng, N. Zhang, S. Li, S. Lin, R. Ning, S. Yang, and Y. Gao, “Latency
minimization of reverse offloading in vehicular edge computing,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5343–5357,
2022.

[29] T. Lu, F. Zeng, J. Shen, G. Chen, W. Shu, and W. Zhang, “A scheduling
scheme in a container-based edge computing environment using deep
reinforcement learning approach,” in 2021 17th International Conference
on Mobility, Sensing and Networking (MSN). IEEE, 2021, pp. 56–65.

[30] M. Wu, W. Qi, J. Park, P. Lin, L. Guo, and I. Lee, “Residual energy
maximization for wireless powered mobile edge computing systems with
mixed-offloading,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 4, pp. 4523–4528, 2022.

[31] X. Wang, J. Li, Z. Ning, Q. Song, L. Guo, S. Guo, and M. S. Obaidat,
“Wireless powered mobile edge computing networks: A survey,” ACM
Computing Surveys, vol. 55, no. 13s, pp. 1–37, 2023.

[32] M. B. Majed, T. A. Rahman, and O. A. Aziz, “Propagation path loss
modeling and outdoor coverage measurements review in millimeter
wave bands for 5g cellular communications,” International Journal of
Electrical and Computer Engineering, vol. 8, no. 4, p. 2254, 2018.

[33] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic
virtual machine management via approximate markov decision process,”
in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[34] A. Sagheer and M. Kotb, “Time series forecasting of petroleum produc-
tion using deep lstm recurrent networks,” Neurocomputing, vol. 323, pp.
203–213, 2019.

[35] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[36] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3554595

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 28,2025 at 02:53:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

[39] L. Meng, M. Wen, Y. Yang, C. Le, X. Li, W. Zhang, Y. Wen,
H. Zhang, J. Wang, and B. Xu, “Offline pre-trained multi-agent decision
transformer: One big sequence model tackles all smac tasks,” arXiv
preprint arXiv:2112.02845, 2021.

[40] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing,” IEEE Trans-
actions on Mobile Computing, 2022.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

Jianqiu Wu received the M.S. degree from the
Faculty of Engineering, the Chinese University of
Hong Kong, in 2018. She is currently pursuing an
M.Phil. degree with the Department of Computer
Science, BNU-HKBU United International College,
Zhuhai, China. She is supervised by Dr. Jianxiong
Guo, and her research interests include reinforce-
ment learning, mobile edge computing, and deep
learning in wireless communications.

Jianxiong Guo (Member, IEEE) received his Ph.D.
degree from the Department of Computer Science,
University of Texas at Dallas, Richardson, TX, USA,
in 2021, and his B.E. degree from the School of
Chemistry and Chemical Engineering, South China
University of Technology, Guangzhou, China, in
2015. He is currently an Associate Professor with
the Advanced Institute of Natural Sciences, Beijing
Normal University, and also with the Guangdong
Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai,

China. He is a member of IEEE/ACM/CCF. He has published more than 80
peer-reviewed papers and been the reviewer for many famous international
journals/conferences. His research interests include social networks, wireless
sensor networks, combinatorial optimization, and machine learning.

Zhiqing Tang (Member, IEEE) received the B.S.
degree from the School of Communication and In-
formation Engineering, University of Electronic Sci-
ence and Technology of China, China, in 2015 and
the Ph.D. degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong Uni-
versity, China, in 2022. He is currently an assistant
professor with the Advanced Institute of Natural
Sciences, Beijing Normal University, China. His
current research interests include edge computing,
resource scheduling, and reinforcement learning.

Chuanwen Luo received his PhD degree in 2020
from the School of Information, Renmin University
of China, Beijing, China. Currently, he is working as
an Assistant Professor at the School of Information
Science and Technology, Beijing Forestry Univer-
sity, Beijing, China. He was a visiting scholar at the
Department of Computer Science of the University
of Texas at Dallas in 2019. His research interests
include various topics in the application of wireless
networks, ad hoc & sensor networks, algorithm
design and analysis, etc.

Tian Wang (Senoir Member, IEEE) received his
BSc and MSc degrees in Computer Science from
the Central South University in 2004 and 2007,
respectively. He received his PhD degree from the
City University of Hong Kong in Computer Science
in 2011. Currently, he is a professor with the Insti-
tute of Artificial Intelligence and Future Networks,
Beijing Normal University. His research interests
include the Internet of Things, Edge Computing,
and Mobile Computing. He has more than 15000
citations, according to Google Scholar. His H-index

is 71.

Weijia Jia (Fellow, IEEE) is currently a Chair Pro-
fessor, Director of BNU-UIC Institute of Artificial
Intelligence and Future Networks, Beijing Normal
University (Zhuhai) and VP for Research of BNU-
HKBU United International College (UIC) and has
been the Zhiyuan Chair Professor of Shanghai Jiao
Tong University, China. He was the Chair Professor
and the Deputy Director of the State Kay Laboratory
of Internet of Things for Smart City at the University
of Macau. He received BSc/MSc from Center South
University, China in 82/84 and Master of Applied

Sci./PhD from Polytechnic Faculty of Mons, Belgium in 92/93, respectively,
all in computer science. From 93-95, he joined German National Research
Center for Information Science (GMD) in Bonn (St. Augustine) as a research
fellow. From 95-13, he worked at the City University of Hong Kong as
a professor. His contributions have been recognized as optimal network
routing and deployment; anycast and QoS routing, sensors networking, AI
(knowledge relation extractions; NLP, etc.), and edge computing. He has over
600 publications in the prestige international journals/conferences and research
books and book chapters. He has received the best product awards from the
International Science & Tech. Expo (Shenzhen) in 20112012 and the 1st Prize
of Scientific Research Awards from the Ministry of Education of China in
2017 (list 2). He has served as area editor for various prestige international
journals, chair, PC member, and keynote speaker for many top international
conferences. He is the Fellow of IEEE and the Distinguished Member of CCF.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3554595

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 28,2025 at 02:53:03 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related work
	System Model & Problem Formulation
	System Model
	Offloading to PVs
	Local Computing
	Problem Formulation

	Reinforcement Learning Solution
	State, Action, and Reward Definition
	The Sequence-Aware Task Scheduling (SATS) Algorithm
	Computational Complexity Analysis

	Numerical Simulations
	Experimental Settings
	Baselines Description.
	Performance Across Diverse Temporal Patterns
	Performance Analysis on Varying Numbers of PVs
	Time Cost on Different Numbers of PVs 

	Conclusion 
	References
	Biographies
	Jianqiu Wu
	Jianxiong Guo
	Zhiqing Tang
	Chuanwen Luo
	Tian Wang
	Weijia Jia


