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Abstract
Lightweight containers provide an efficient approach for deploying computation-intensive applications in network edge. The 
layered storage structure of container images can further reduce the deployment cost and container startup time. Existing 
research has rarely considered the dynamic adjustment of different metrics in schedulers, and layer-aware scheduling is still 
in the theoretical stage. Moreover, current schedulers fail to utilize system resources efficiently. To address this gap, a Layer-
aware, Resource-balanced, and Request-adaptive container Scheduler ( LR2Scheduler) has been proposed and implemented 
in edge computing. Specifically, we first utilize container image layer information to design and implement a node scoring 
and container scheduling mechanism. This mechanism effectively lowers download costs for container deployment, which 
is crucial for edge computing with limited bandwidth. Then, we design a scoring system that adapts to resource demands 
based on user requirements and the remaining resource information to optimize idle resource utilization. Finally, based on 
the aforementioned multifaceted scoring mechanism, the scheduler can dynamically adjust scheduling weights to select 
appropriate strategies to meet user demands while also ensuring load balancing within the edge cluster. Our LR2Scheduler 
is built on the scheduling framework of Kubernetes, enabling full process automation from task information acquisition to 
container deployment. Testing on a real system has demonstrated that our LR2Scheduler effectively reduces load imbalance 
among cluster nodes, enhances resource utilization, and significantly optimizes the efficiency and performance of container 
deployment compared to the default scheduler.

Keywords Dynamic weight · Layer-aware scheduling · Container scheduler · User requirements · Edge computing

1 Introduction

Emerging as a prominent computing paradigm, edge com-
puting enhances resource availability by deploying applica-
tions on edge servers closer to users (Shi et al. 2016). Con-
tainers have emerged as the preferred method for deploying 
services and applications in edge computing, thanks to their 
lightweight nature and ease of deployment, which greatly 
facilitates the flexible allocation and efficient utilization of 
resources (Tang et al. 2023; Ma et al. 2018; Fu et al. 2020). 
By utilizing containers on edge servers, applications can 
significantly reduce the response time and enhance the 
Quality of Service (QoS). Kubernetes has become the lead-
ing tool for container cluster orchestration in cloud data 
centers(Carrión 2022), managing the entire lifecycle of 
containers including deployment (Tang et al. 2023), migra-
tion (Tang et al. 2024), updates (Cui et al. 2024), and elas-
tic scaling (Brooker et al. 2023). Kubernetes offers vari-
ous scheduling strategies, such as ImageLocality and 
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LeastAllocated, to achieve different goals like select-
ing nodes with pre-existing container images or those with 
balanced resource usage (Rejiba and Chamanara 2022). 
However, few default scheduling strategies in edge comput-
ing take into account the limited bandwidth and historical 
user request data, which is crucial for latency-sensitive edge 
users and resource-constrained servers.

Existing research shows that default Kubernetes schedul-
ing algorithms are poorly suited for edge computing environ-
ments due to their limited resources, geographic dispersion, 
and network instability (Zhu et al. 2021; Xing et al. 2022; 
Carrión 2022). To address this, container management tools 
like KubeEdge (Xiong et al. 2018), K3s (2024), and Akraino 
(2024) extend Kubernetes to the edge by adding features 
such as robust management and MQTT support (Xiong et al. 
2018). Additionally, tools like Koordinator (2024), Volcano 
(2024), and Katalyst (2024) enhance Kubernetes for distrib-
uted scenarios by improving QoS support. However, these 
tools not only neglect the issue of limited bandwidth in edge 
computing, but also fail to adequately address the problems 
of resource fragmentation and load imbalance as well. This 
results in degraded system stability and response speed, mak-
ing the downloading of container images time-consuming (Fu 
et al. 2020). Container images are stored in layers, and repeated 
downloads can be reduced by sharing these layers (Gu et al. 
2023). Existing researches have explored layer sharing and 
proposed algorithms for container placement (Tang et al. 2023; 
Gu et al. 2021), migration (Tang et al. 2024), and image down-
loads (Gu et al. 2023; Lou et al. 2022) based on layer sharing. 
Despite this, a systematic implementation of a layer sharing 
scheduler is still necessary. Implementing this scheduler in 
edge environments is crucial to reduce deployment cost for 
many edge clusters managed by Kubernetes.

Implementing the layer-aware, resource-balanced, and 
request-adaptive scheduler in edge clusters is highly challeng-
ing. Using the scheduling framework of Kubernetes (Sched-
uling Framework 2024), we can create various extension 
points like Filter, Score, and Bind. The Filter extension point 
eliminates nodes that cannot run the container. The Score then 
ranks the remaining nodes. The scheduler calls each scoring 
extension point for every node. Finally, the Bind extension 
point binds a container to a node. However, the first chal-
lenge remains on how to automatically obtain and score layer 
information for nodes. Currently, most existing work lacks sys-
tematic implementation, with some basic schedulers requir-
ing prior knowledge of layer information (Fu et al. 2020). To 
fill in such gaps, we develop a custom layer-aware scheduler 
within the Kubernetes scheduling framework that automati-
cally retrieves and updates layer information from the Docker 
registry, integrating seamlessly with Kubernetes deployments 
(2024). Layer information is periodically retrieved from 
the registry and cached locally. The scheduler analyzes the 
required layer information for new container deployment tasks, 

and gathers the existing image layer information from each 
edge node, scores and rates the nodes, finally deploys contain-
ers accordingly.

However, using only the layer-aware scheduler will make 
Kubernetes tend to schedule containers on edge nodes with 
more layers, leading to higher load on these nodes with oth-
ers remaining underutilized and generating a large amount 
of resource fragmentation. This brings up a second chal-
lenge, i.e., how to make container scheduling decisions that 
meet user needs while ensuring efficient utilization of node 
resources. Existing research has considered the resource 
utilization when scheduling containers (Gunasekaran et al. 
2020), including the default scheduling policy NodeRe-
sourcesBalancedAllocation (Scheduler Configu-
ration 2024). However, these studies cannot dynamically 
focus on different scheduling strategies based on user needs, 
nor can they effectively combine layer sharing to further 
reduce deployment costs while maintaining load balancing. 
To address these issues, we propose a resource-balanced, 
user request-adaptive strategy combined with layer-aware 
approaches and Kubernetes scheduling plugins to derive 
new scores through weighted calculations. Moreover, static 
weights for various metrics do not effectively adapt to load 
changes and cannot fine-tune scheduling parameters for dif-
ferent network environments, which is essential for ensur-
ing QoS for various services (Li et al. 2012). Therefore, 
we further design a Layer-aware, Resource-balanced, and 
Request-adaptive container Scheduler ( LR2Scheduler) for 
edge computing. The LR2Scheduler dynamically adjusts the 
layer score weight, lowering it during high load to minimize 
impact and raising it during low load to decrease download 
costs and shorten container startup time.

In this paper, we propose and implement the LR2

Scheduler within the Kubernetes scheduling framework 
for edge computing. As shown in Fig. 1, LR2Scheduler 
employs a layer-sharing scoring mechanism that dynami-
cally adapts to resource utilization and user request using 
scoring extension points, the Kubernetes API, etcd, and 
Kubelet. When a new container request is sent from the 
user, LR2Scheduler first retrieves the required resource 
information and layer information from the user, and 
obtains the remaining resource information and locally 
stored layer information from each node. It then scores 
the nodes using all the information and combines the 
score with the score of default Kubernetes scheduler to 
minimize container deployment costs while maintain-
ing efficient resource utilization. Finally, the scheduler 
selects the highest-scoring node for task deployment. The 
scheduler dynamically adjusts the weights of all scoring 
mechanisms and integrates well with various scheduling 
plugins, providing good scalability. We have implemented 
this custom scheduler in Kubernetes and verified it in a 
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real cluster environment. Experimental results show that 
our LR2Scheduler lowers deployment costs while consid-
ering load balancing.

In this extended version of our previous work (Tang 
et al. 2024), we aim to minimize resource fragmentation 
and optimize the dynamic weight algorithm to improve 
adaptability and effectiveness in dynamic environments. 
First, we improve the problem modeling by incorporating 
a resource demand adaptive strategy and refining the final 
score of scheduler based on real-world adjustments to bet-
ter capture features of user demand. The strategy is used to 
determine whether there is similarity in the history of user 
requests, reducing resource fragmentation, enabling the 
cluster to deploy more containers. Second, we improve the 
dynamic weight mechanism by changing its values from 
discrete to continuous and implement real-time weight 
adjustments for the three scheduling strategies that we 
used, leading to better decision-making and minimized 
adverse effects compared to previous work (Tang et al. 
2024). Additionally, we refine the resource balance sched-
uling mechanism by reducing the occurrence of high-load 
nodes. We further validate the effectiveness and adapt-
ability of our LR2Scheduler through experimental testing.

In summary, the contributions of this paper are as 
follows: 

1. We propose and implement a layer-aware, resource-
balanced, and request-adaptive container scheduler, 
which autonomously calculates scores using the exist-
ing resource information on nodes, user requirements, 
and layer information. This scheduler can effectively 
reduce resource fragmentation and lower deployment 
costs when deploying containers.

2. We present a resource-adaptive weight adjustment 
algorithm that enhances load balancing and optimizes 
resource utilization. This method reduces layer down-
load costs by combining resource demand adaptive 
scheduling plugins with layer scheduling plugins and the 
official scheduler. This approach reduces layer download 
costs during low load periods while balancing container 
distribution among nodes during high load.

3. We implement our LR2Scheduler in a real Kubernetes-
based edge system. The experimental results show that 
our LR2Scheduler has good scalability. It can effectively 
reduce the deployment cost of containers and balance 
the resource load of different nodes.

The rest of this paper is organized as follows. In Sect. 2, 
the related work is introduced; Sect. 3 describes the system 
model and problem statement; Sect. 4 presents the dynamic 
adaptation layer scheduling algorithm based on resource 
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demand; Sect. 5 details the system implementation; Sect. 6 
evaluates performance; Sect. 7 concludes the paper.

2  Related work

2.1  Resource allocation in edge computing

Significant advancements have been made in resource 
allocation research for edge computing (Wang et al. 2020, 
2021). For example, Xing et al. (2023) model the computing 
resources of the edge nodes uniformly and introduce meth-
ods for heterogeneous task classification and recognition. 
Cai et al. (2024) present an explainable online approxima-
tion algorithm to optimize resource allocation, balancing 
model training and inference accuracy. Ouyang et al. (2023) 
propose a reactive provisioning approach for hybrid resource 
provisioning without prior knowledge of future system 
dynamics. Xu et al. (2024) formulate the dynamic parallel 
multi-server selection and allocation problem to minimize 
task computing and transmission times. Chen et al. (2024) 
develop an algorithm to minimize system energy consump-
tion while meeting performance requirements for dynamic 
task offloading and resource allocation. Xu et al. (2023) 
explore joint channel estimation and resource allocation 
in Intelligent Reflecting Surface-aided edge computing 
systems.

In large-scale task scheduling within cloud environments, 
existing mechanisms do not adequately address the specific 
characteristics of user tasks, limiting Kubernetes’s ability 
to optimize performance (Dong et al. 2024). Analyzing 
users’ historical deployment tasks can reveal patterns in 
their needs, enabling better resource allocation, minimizing 
fragmentation, and predicting future resource requirements 
(Xie et al. 2019).

2.2  Layer‑aware container scheduling

Layer-aware scheduling research is in its early stages. Rong 
et al. (2022) analyze 3735 images from Docker Hub and 
find that caching image layers on destination servers reduces 
migration time. Ma et al. (2018) propose an edge comput-
ing platform that uses the layered features of the storage 
system to reduce the synchronization cost of the file system. 
Lou et al. (2022) address the container assignment and layer 
sequencing problem, proving its NP-hardness, and proposing 
a layer-aware scheduling algorithm. Gu et al. (2021) study a 
layer aware microservice placement and request scheduling 
at the edge. Dolati et al. (2022) address essential aspects of 
orchestrating services such as downloading and sharing con-
tainer layers and steering traffic among network functions. 
Liu et al. (2022) study the optimal deployment strategy to 

balance layer sharing and chain sharing of microservices to 
minimize image pull delay and communication overhead.

However, existing research on layer-aware container 
scheduling and resource allocation has not effectively inte-
grated layer sharing information with load balancing and 
user demands. Although some studies have made initial 
considerations (Tang et al. 2023; Gu et al. 2021; Tang et al. 
2024), they lack focus on real system implementation or 
information retrieval. This paper presents LR2Scheduler, an 
efficient and scalable solution that addresses this gap in cur-
rent research.

3  System model and problem formulation

3.1  System model

In edge computing, services are created on specific edge 
nodes, requiring containers to run. These containers rely on 
images, which are built from multiple layers.

Overview: A set of tasks K = {k1, k2, ..., k|K|} is offloaded 
from users to edge nodes for processing, where | ⋅ | is used 
to indicate the number of elements in the set, e.g., |K| is the 
number of tasks. To handle these tasks, a set of containers 
C = {c1, c2, ..., c|C|} is deployed on the nodes. Each container 
requires an image file from the set M = {m1,m2, ...,m|M|} . 
Since requesting a container is equivalent to requesting 
its corresponding image, and the only difference is a writ-
able container layer, these concepts are unified (Zhao et al. 
2020; Tang et al. 2023). Essentially, a task requests a con-
tainer, which in turn requires specific layers from the set 
L = {l1, l2, ..., l|L|}.

Edge node: The set of edge nodes, N = {n1, n2,… , n|N|} 
is deployed at the edge of the core network. Each node n ∈ N 
maintains three sets: running containers Cn(t) ⊆ C , local 
images Mn(t) ⊆ M , and local layers Ln(t) ⊆ L . Addition-
ally, each node has a CPU core number pn , memory capacity 
en , bandwidth bn , and storage capacity dn . A node can run a 
maximum of Cn containers simultaneously.

Layer: The set of layers in container c ∈ C is 
Lc = {xl

c
∣ l ∈ L} , where xl

c
= 1 if container c contains layer 

l, and xl
c
= 0 otherwise. The size of layer l ∈ L is dl.

Task: For each task k ∈ K generated by a user at time 
t, the requested CPU resource is pk and the requested con-
tainer is ck . After scheduling, the node assigned to this task 
is nk = {un

k
∣ n ∈ N} , where un

k
= 1 if task k is scheduled to 

node n, otherwise un
k
= 0.

3.2  Modeling of cost and score

In edge computing, limited bandwidth and large image 
sizes result in significant download cost when deploying 
containers. Compared to this, container startup cost is 
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minimal (Tang et al. 2023). Therefore, our paper focuses 
on download cost .

For task k requesting container c, the requested layers are 
Lc . At time t, the layers stored on edge node n are Ln(t) . The 
layers from Lc found on node n are Lc ∩ Ln(t) . The download 
cost Cn

c
(t) for deploying container c on node n is:

The download time for node n can be obtained as

Moreover, the total size Dn
c
(t) of local layers for node n is:

Assume that the maximum score before weighting for each 
node is denoted as MaxScore (Carrión 2022). Then, the layer 
sharing score Sk,n

Layer
(t) of node n at time t  is calculated as 

follows:

The layer reuse index r is used to measure the utilization of 
image layer resources:

To calculate the optimal deployment mechanism score, we 
first consider the set of the five most recent tasks, including 
the current one, deployed in the cluster. For each task, the 
ratio of requested memory ei to requested CPU pi is calcu-
lated for i ∈ [1, 5] . The ratio e6

p6
 is calculated for the node’s 

remaining resources. Then, the standard deviation STDk,n

Eval
(t) 

of the resource demands and node resources is calculated to 
measure their correlation:

where � is the average ratio of local resources and historical 
task resource demands, obtained as:

Using the standard deviation STDk,n

Eval
(t) , the optimal deploy-

ment mechanism score Sk,n

Eval
(t) of node n is calculated as 

follows:

(1)C
n
c
(t) =

∑

l∈Lc⧵Ln(t)

dl.

(2)T
k,n =

C
n
k
(t)

bn
.

D
n
c
(t) =

∑

l∈Lc∩Ln(t)

dl.

(4)S
k,n

Layer
(t) =

D
n
c
(t)

∑
l∈Lc

dl
×MaxScore.

(5)r =
(
Al∈Lc∩Ln(t)

× 0.3
)
+
[
D

n
c
(t) × 0.7

]
.

(6)STD
k,n

Eval
(t) =

√√√√1

6

6∑

i=1

(xi − �)2,

(7)� =
1

6

6∑

i=1

ei

pi
.

To reduce the occurrence of load imbalance, the resource 
balancing score Sk,n

Bal
(t) is modified as follows:

where STDk,n

Node
(t) is the system resource standard deviation:

The above scores of the scheduler are then combined using 
dynamic weights. The weight of the layer sharing score is 
denoted as Wk,n

Layer
(t),

where STDS(t) = min(STD
k,n

Node
(t), STD

k,n

Eval
(t)).

The weight of the optimal deployment mechanism score 
W

k,n

Eval
(t) is:

The weight of the resource balancing mechanism score 
W

k,n

Bal
(t) is:

Moreover, the evaluation score of the default Kubernetes 
scheduler is denoted as Sk,n

K8s
(t) . The weighted score Sk,n(t) 

(with weights satisfying w ∈ [0, 5] ) can be calculated as:

The node nk for task k is selected as the scheduling node with 
the highest score:

3.3  Layer‑aware and request‑aware problem

Constraints: During the scheduling process, constraints are 
used for prefiltering and filtering plugins. The storage capac-
ity of each node must satisfy:

(8)S
k,n

Eval
(t) = MaxScore ×

(
1 − STD

k,n

Eval
(t)
)
.

(9)
S
k,n

Bal
(t) =MaxScore ×

(
1 − STD

k,n

Node
(t) −

pn(t)

pn

−
en(t)

en
− 0.5 ×

qn(t)

qn

)
,

(10)STD
k,n

Node
(t) = 0.5 ×

||||
pn(t)

pn
−

en(t)

en

||||
.

(11)W
k,n

Layer
(t) =

D
n
c
(t)

2

STDS(t)

=
D

n
c
(t) × STDS(t)

2
,

(12)W
k,n

Eval
(t) =

2

STD
k,n

Eval
(t)

D
n
c
(t)

=
2

STD
k,n

Eval
(t) ×D

n
c
(t)

.

(13)W
k,n

Bal
(t) =

2

STD
k,n

Node
(t)

D
n
c
(t)

=
2

STD
k,n

Node
(t) ×D

n
c
(t)

.

(14)
S
k,n(t) =W

k,n

Layer
(t) × S

k,n

Layer
(t) +W

k,n

Eval
(t) × S

k,n

Eval
(t)

+W
k,n

Bal
(t) × S

k,n

Bal
(t) + S

k,n

K8s
(t).

(15)nk = argmax
n

S
k,n(t).
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Moreover, the running container number limit is as follows:

And each task should only be scheduled to one node:

Problem statement: The goal of the layer-aware scheduler 
is to minimize the download cost, i.e., to maximize the layer 
sharing score Sk,n

Layer
(t) . The problem can be defined as 

follows:

Similarly, the goal of resource demand adaptation is to maxi-
mize the deployable task volume, i.e., to maximize the eval-
uation score Sk,n

Eval
(t) . The problem can be defined as follows:

By integrating resource demand adaptation, layer sharing 
scores, and other scheduling plugins, this problem can adapt 

(16)C
n
c
(t) +

∑

l∈Ln(t)

dl ≤ dn, ∀t,∀n.

(17)|Cn(t)| ≤ Cn.

(18)
∑

n∈N

un
k
= 1, ∀k.

(19)
maxSLayer =

∑

k∈K

S
k,n

Layer
(t),

s.t. Eqs.(16), (17), (18).

(20)
maxSEval =

∑

k∈K

S
k,n

Eval
(t),

s.t. Eqs. (16), (17), (18).

to different forms. For example, when combined with the 
default Kubernetes scheduler:

4  Proposed design of LR2Scheduler

4.1  LR2Scheduler

The LR2Scheduler algorithm, as shown in Algorithm 1, 
takes task k and a set of edge nodes N as input and out-
puts the selected node nk for container deployment. First, 
the scores are initialized to 0. Then, the scores for the three 
scheduling strategies-layer sharing, resource demand adapta-
tion, and node resource balancing-are calculated based on 
Eqs. (4), (8), (9), respectively. Next, the weights of the above 
three strategies are calculated based on Eqs. (11), (12), 
(13), dynamically balancing the system’s existing resources 
with user demands. Finally, the weighted scores of these 
three strategies are combined with the evaluation scores of 
the Default Scheduler plugin (as in Eq. (14)). Each task is 
deployed to the node with the highest score.
Algorithm 1  LR2Scheduler

(21)
maxS =

∑

k∈K

S
k,n(t),

s.t. Eqs. (16), (17), (18).
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4.2  Scalability of LR2Scheduler

Next, we discuss the extensibility of LR2Scheduler. As 
shown in Algorithm 1, LR2Scheduler first evaluates the 
scores for resource demand adaptation and layer sharing. 
Then, it calculates dynamic weights and combines the scores 
with other scheduling plugins to obtain the final weighted 
score. The method of adjusting dynamic weights can be eas-
ily extended to allow LR2Scheduler to work with any sched-
uling plugin, ensuring the performance of other schedulers 
while minimizing container deployment costs. The extensi-
bility of LR2Scheduler is mainly reflected in three aspects: 
the conditions for dynamic weight adjustment, the values of 
dynamic weights, and the combination of schedulers. Details 
are as follows:

Conditions for dynamic weight adjustment: The weights 
of the three strategies in Algorithm 1 consider the node’s 
resource demand adaptation, resource balancing, and layer 
sharing scores. In fact, other factors can also be taken 
into account. For example, storage space, memory, GPU 
resources, and node availability labels can be further ana-
lyzed to enhance dynamic weight adjustment methods.

Values for dynamic weight: This method can also be used 
to adjust dynamic weights to extend LR2Scheduler. For 
example, it can set other weights that better match individual 
needs. Moreover, we can add more conditions or piecewise 
functions, like a function � = f (S

k,n

Weight
(t)) or a neural net-

work to adjust the weight.
Combining schedulers: LR2Scheduler can also be inte-

grated with other Kubernetes schedulers. In the next section, 
we will discuss the implementation of LR2Scheduler. We 
have combined LR2Scheduler with some default plugins, as 
shown below: 

1. ImageLocality that prefers nodes with the container 
images already present.

2. TaintToleration that implements taints and tolera-
tions, reducing deployment priority for tainted nodes.

3. NodeAffinity that implements node selectors and affin-
ity, scoring nodes higher that meet more affinity condi-
tions. Preference is given to nodes that satisfy the speci-
fied rules.

4. PodTopologySpread that implements container 
topology spread by selecting the node with the highest 
score for each topology pair.

5. NodeResourcesFit that verifies if the node has all 
the resources requested by the container. The default 
strategy is LeastAllocated.

6. VolumeBinding that verifies if the node can bind the 
requested volumes, prioritizing the smallest volume that 
meets the required size.

7. InterPodAffinity that implements inter-Pod affinity 
and anti-affinity similar to NodeAffinity.

Notably, the plugins mentioned above can be enabled or dis-
abled individually, and they can also be combined in various 
ways to achieve different effects. The main extension point 
of LR2Scheduler is the score; by integrating resource alloca-
tion strategies and layer sharing into the final differentiation, 
it can adapt to various scheduling requirements while mini-
mizing container deployment costs. Overall, LR2Scheduler 
has distinctive extensibility.

5  System implementation

As shown in Fig. 2, LR2Scheduler is implemented within the 
Kubernetes system using the scheduling framework (Sched-
uling Framework 2024). LR2Scheduler is deployed to the 
system using deployment (Deployments 2024). First, the 
user sends a container deployment request, specifying the 
container and resource limits, and sets the scheduler to LR2

Scheduler. Upon receiving the request, the Kubernetes API 
Server invokes LR2Scheduler for scheduling. LR2Scheduler 
first updates the layer information from the registry, then 
performs layer matching and scoring. Next, LR2Scheduler 
starts resource matching and evaluation. After the evalu-
ation is completed, it calculates the dynamic weights and 
final scores, as detailed in Algorithm 1. Once the score 
is obtained, the Kubernetes API selects the node with the 
highest container deployment score to complete the entire 
scheduling process. Here are some key details in the imple-
mentation process of the LR2Scheduler as shown in Fig. 2.

① Update layer information from Registry. Existing meth-
ods cannot automatically retrieve layer information due to 
challenges in real-time reading and parsing, unstable band-
width causing connection interruptions in edge computing, 
and read permission issues from container isolation (Fu et al. 
2020). Currently, there is no automatic way to query mir-
ror layer information. We address these issues by creating a 
goroutine to periodically fetch all images and their tags 
from the Docker registry’s /v2/_catalog endpoint. At service 
start, the Registry class initializes. The method Registry 
Watcher is called, and it waits for 10 s by default to access 
the registration interface. It filters layer IDs and sizes, stores 
the data keyed by image name and tag in a JSON file as 
shown in Listing 1, and uses this cached file as the metadata 
to compare image sizes through layer information lookup. 
The retrieved data is formatted into a map[string]ImageM-
etadata structure and saved in the cache.json file.

② Match and score layers.Determining the size of the 
layers and aligning them is challenging. Due to the stor-
age structure, we cannot directly obtain layer size from the 
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image ID. Therefore, we utilize the cache.json file as 
follows: 

1. The scheduler retrieves scheduled container information 
from *k8s.io/api/core/v1.Pod. The image name and tag 
are accessible via pod.spec.Containers[].Image.

2. To obtain the layer sizes from the Registry metadata, 
we use the image and tag as keys to search the cache.
json file, returning the layer information ImageM-
etadata for that image.

3. Extract layer information from cached image names and 
tags in the cache.json file.

4. To calculate the node score, the node information includ-
ing available resource and local images is obtained using 
the Handle method from the base class (framework.
ScorePlugin), specifically k8s.io/kubernetes/pkg/sched-
uler/framework.Handle. This includes the node’s IP 
address. By calling the Docker API at http://IP:2375, 
all cached images can be retrieved.

5. Compare the container layers from step 2 with the 
cached layers from step 4, extract the matching cached 
data, and calculate the total cached layer size.

③ Dynamic Weight Calculation. The challenge is how to 
determine the suitable weights and adjustments based on 
different needs as discussed in Sect. 3.2. LR2Scheduler cal-
culates dynamic weights through the following steps: 

1. Using node information (*k8s.io/kubernetes/pkg/sched-
uler/framework.Nod eInfo), we can access detailed 
information about all available resources on the current 
node and all running containers. This includes: the usage 
percentage of resources (CPU, memory, storage), the 
number of running Pods, and the resource consumption 
of each Pod.

2. Calculate the available CPU and memory percentages by 
dividing the total requested resources of all containers 
by the node’s available resources. Then, compute the 
standard deviation (STD).

3. Return different weights based on Eqs. (11), (12), (13).
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Fig. 2  LR2Scheduler implementation in Kubernetes system
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Listing 1  Data Structure

6  Experiments

6.1  Experimental settings

To verify LR2Scheduler, we set up a Kubernetes cluster 
with 1 master node and 4 worker nodes. All the nodes have 
Linux CentOS 7 installed. The Kubernetes version used 
is v1.23.8. The container runtime is Docker with version 
20.10.8. The Kubelet and Kube-proxy versions are both 
v1.23.8. All nodes have 4-core CPUs. The master node has 
8GB of memory and a 60GB hard drive. Worker node 1 has 
4GB of memory and a 30GB hard drive. Worker node 2 has 
2GB of memory and a 30GB hard drive. Worker nodes 3 and 
4 each have 4GB of memory and a 20GB hard drive. The 
custom scheduler is implemented in Go language, version 
go1.18linux/amd64.

We have deployed a private repository using Docker reg-
istry. We select some images from Docker Hub and upload 
them to our private repository, including WordPress, Ghost, 
GCC, Redis, Tomcat, MySQL, etc. During the experiments, 
we randomly request these images, setting random CPU and 
memory limits for each request. Each image consists of sev-
eral layers, and the information about these layers can be 

retrieved from the registry. We conduct multiple experiments 
by deploying different numbers of workers and setting vari-
ous bandwidth limits.

The experiments compare LR2Scheduler with the Default 
Scheduler and the Static Layer scheduler. The Default 
Scheduler enables scheduling plugins as described in 
Sect. 3.2. The Static Layer Scheduler uses the layer-aware 
scheduling plugin as a baseline, with a weight setting of 2 
while weights of other plugins are 1. The maximum score 
MaxScore for the node before weighted is set to 100.

6.2  Experimental results

Performance with different number of pods. Kubernetes 
operates on Pods, which in our case are equivalent to single-
container Pods. Figure 3a–c show that due to the Default 
Scheduler being a local optimization algorithm, it easily 
generates resource fragments. When some resources have 
been completely consumed, it will leave other resources 
unusable, while using LR2Scheduler to schedule nodes 
can generate less resource fragmentation. Figure 3d and e 
demonstrate that in the scheduling process, compared to the 
Default Scheduler, LR2Scheduler can maintain a lower level 
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of standard deviation, indicating that LR2Scheduler can help 
clusters achieve better balance. Additionally, the resource 
balance of the nodes after scheduling is significantly bet-
ter than that achieved with the Default Scheduler, reducing 
the occurrence of load imbalance. Figure 3f illustrates that 
using the LR2Scheduler decreases the number of nodes with 
resource usage over 80% by 50% compared to the Default 
Scheduler for the same tasks.

Performance with different number of nodes. To evaluate 
the performance under different number of nodes, experi-
ments are conducted using 3, 4, and 5 edge nodes. With 
the help of resource request history evaluation strategy, the 
total number of tasks that can be deployed in the cluster has 
increased. Figure 4a indicates that the LR2Scheduler can 
deploy the most containers, averaging 24% and 50% more 
than the official Default Scheduler and the Layer scheduler, 
respectively. Figure 4b shows that, for tasks with identical 

configurations, the Layer Scheduler and LR2Scheduler sig-
nificantly reduce download volume compared to the Default 
Scheduler. The average reduction is respectively 39% and 
35%. As shown in Fig. 4c, the Layer Scheduler reduces the 
average disk usage by 45%, while LR2Scheduler reduces the 
average disk usage by 41%. Although the Layer Scheduler 
performs a bit better in download size, the LR2Scheduler 
can dynamically adjust the weights of different scheduling 
strategies, effectively balancing resource allocation. This is 
particularly evident in cluster resource balance. As shown 
in Fig. 4d, the slight advantage of the Layer Scheduler in 
metrics such as download volume comes at a significant cost 
to cluster resource balance (according to Eq. (10)), resulting 
in an average reduction of 33% in the number of deployable 
tasks compared to the LR2Scheduler.

Performance with different bandwidth. Fig. 5 shows the 
download time at various bandwidths. It is clear that LR2

Table 1  Performance analysis 
for 20 containers

# Scheduler Size (MB) Reusage STD # Scheduler Size (MB) Reusage STD

1 Default 3 22.6 0.02 11 Default 3 26.42 0.11
Layer 1 0.9 0.07 Layer 1 3.6 0.27
LR

2Scheduler 3 0 0.02 LR
2Scheduler 4 2.4 0.15

2 Default 490 177.76 0.03 12 Default 474 141 0.14
Layer 434 202.4 0.05 Layer 141 275.9 0.31
LR

2Scheduler 434 72.2 0.05 LR
2Scheduler 141 233.6 0.18

3 Default 380 122.38 0.03 13 Default 164 110.71 0.19
Layer 201 187.9 0.02 Layer 164 167.9 0.26
LR

2Scheduler 201 127.6 0.02 LR
2Scheduler 164 118.7 0.21

4 Default 160 77.17 0.04 14 Default 52 42.4 0.23
Layer 111 90.3 0.1 Layer 22 16.5 0.29
LR

2Scheduler 111 71.58 0.06 LR
2Scheduler 55 0 0.24

5 Default 15 28.55 0.08 15 Default 37 36.65 0.17
Layer 15 24 0.12 Layer 28 32.1 0.32
LR

2Scheduler 15 19.5 0.08 LR
2Scheduler 29 19.5 0.21

6 Default 6 29.32 0.12 16 Default 356 75.48 0.19
Layer 6 5.1 0.16 Layer 6 1.8 0.36
LR

2Scheduler 9 2.4 0.09 LR
2Scheduler 6 251.6 0.25

7 Default 416 162.29 0.15 17 Default 518 77.59 0.21
Layer 416 154.1 0.2 Layer 99 80.6 0.35
LR

2Scheduler 416 29.3 0.13 LR
2Scheduler 189 47.3 0.21

8 Default 285 90.74 0.12 18 Default 238 64.6 0.17
Layer 66 174.6 0.24 Layer 208 107 0.3
LR

2Scheduler 66 154.8 0.18 LR
2Scheduler 228 99.8 0.26

9 Default 54 34.59 0.14 19 Default 113 32.81 0.19
Layer 24 27.8 0.27 Layer 28 15.8 0.33
LR

2Scheduler 24 14.3 0.16 LR
2Scheduler 22 1.7 0.23

10 Default 49 21.93 0.13 20 Default 46 48.19 0.24
Layer 21 33.9 0.3 Layer 2 16.7 0.34
LR

2Scheduler 49 24.12 0.15 LR
2Scheduler 50 33.63 0.22
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Scheduler has a more pronounced advantage when the edge 
network bandwidth is low. Overall, compared to the Default 
Scheduler, LR2Scheduler reduces the average download time 
by 47%. Due to the combination of layer scheduling plugins, 
LR2Scheduler shows a significant improvement over the 
Default Scheduler. Figure 6 shows that both Layer Scheduler 
and LR2Scheduler demonstrate significantly higher cumula-
tive reuse index compared to the default scheduler as the 
number of deployed containers increases. LR2Scheduler’s 
effectiveness is further demonstrated by its ability to con-
sider additional metrics, such as resource balancing.

Moreover, as shown in Table 1, we have detailed the 
download size, reusage, and resource balancing (STD) 
for deploying 20 containers. While LR2Scheduler may 
not have the smallest download size at each step, it ulti-
mately results in almost the lowest total download cost and 
reusage while considering resource balancing, demonstrat-
ing its long-term effectiveness despite room for improve-
ment. Besides the scalability discussed in Sect.  4.2, 

reinforcement learning algorithms can also be considered 
to optimize container deployment costs by accounting for 
long-term benefits.

In summary, the LR2Scheduler effectively reduces 
download costs while maintaining efficient resource uti-
lization. Additionally, it allows for the selection of differ-
ent scheduling strategies or adjustment of weights based 
on specific needs. The effectiveness of the LR2Scheduler 
is further reflected in its ability to consider additional 
metrics.

7  Conclusion

In this paper, we proposed and implemented a layer-aware, 
resource-balanced, and request-adaptive container sched-
uler for edge computing. First, we designed a user request 
evaluation plugin, and then integrated it with a layer-aware 
mechanism to form a Kubernetes scheduling scheduler 

Fig. 3  Performance with different numbers of deployed pods
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that can effectively reduce the network transmission cost 
between container deployments, minimize resource frag-
mentation, and meet resource balance and other indicators. 
Finally, by using the Kubernetes scheduling framework, 
the LR2Scheduler was implemented. The experimental 
results in the Kubernetes system show that this scheduler 
improved resource utilization rates, optimized deploy-
ment costs, and enhanced system performance. This study 

demonstrates that in real systems, the LR2Scheduler can 
achieve the flexibility of shared scheduling among layers 
based on resource requirements, while also highlighting 
further optimization opportunities. In future work, we 
will design scheduling algorithms using reinforcement 
learning and other long-term optimization strategies, and 
implement them in Kubernetes. Moreover, we will explore 
cloud-edge and edge-edge collaborative layer sharing to 

Fig. 4  Performance with different number of nodes
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reduce container startup time by transferring layers from 
other edge nodes.
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