
Vol.:(0123456789)

CCF Transactions on Pervasive Computing and Interaction
https://doi.org/10.1007/s42486-025-00186-z

REGULAR PAPER

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive
container scheduling for edge computing

Wentao Peng1 · Zhiqing Tang2 · Jianxiong Guo1,2 · Jiong Lou3 · Tian Wang2 · Weijia Jia1,2

Received: 25 January 2025 / Accepted: 2 February 2025
© China Computer Federation (CCF) 2025

Abstract
Lightweight containers provide an efficient approach for deploying computation-intensive applications in network edge. The
layered storage structure of container images can further reduce the deployment cost and container startup time. Existing
research has rarely considered the dynamic adjustment of different metrics in schedulers, and layer-aware scheduling is still
in the theoretical stage. Moreover, current schedulers fail to utilize system resources efficiently. To address this gap, a Layer-
aware, Resource-balanced, and Request-adaptive container Scheduler (LR2Scheduler) has been proposed and implemented
in edge computing. Specifically, we first utilize container image layer information to design and implement a node scoring
and container scheduling mechanism. This mechanism effectively lowers download costs for container deployment, which
is crucial for edge computing with limited bandwidth. Then, we design a scoring system that adapts to resource demands
based on user requirements and the remaining resource information to optimize idle resource utilization. Finally, based on
the aforementioned multifaceted scoring mechanism, the scheduler can dynamically adjust scheduling weights to select
appropriate strategies to meet user demands while also ensuring load balancing within the edge cluster. Our LR2Scheduler
is built on the scheduling framework of Kubernetes, enabling full process automation from task information acquisition to
container deployment. Testing on a real system has demonstrated that our LR2Scheduler effectively reduces load imbalance
among cluster nodes, enhances resource utilization, and significantly optimizes the efficiency and performance of container
deployment compared to the default scheduler.

Keywords Dynamic weight · Layer-aware scheduling · Container scheduler · User requirements · Edge computing

1 Introduction

Emerging as a prominent computing paradigm, edge com-
puting enhances resource availability by deploying applica-
tions on edge servers closer to users (Shi et al. 2016). Con-
tainers have emerged as the preferred method for deploying
services and applications in edge computing, thanks to their
lightweight nature and ease of deployment, which greatly
facilitates the flexible allocation and efficient utilization of
resources (Tang et al. 2023; Ma et al. 2018; Fu et al. 2020).
By utilizing containers on edge servers, applications can
significantly reduce the response time and enhance the
Quality of Service (QoS). Kubernetes has become the lead-
ing tool for container cluster orchestration in cloud data
centers(Carrión 2022), managing the entire lifecycle of
containers including deployment (Tang et al. 2023), migra-
tion (Tang et al. 2024), updates (Cui et al. 2024), and elas-
tic scaling (Brooker et al. 2023). Kubernetes offers vari-
ous scheduling strategies, such as ImageLocality and

 * Zhiqing Tang
 zhiqingtang@bnu.edu.cn

 Wentao Peng
 wentaopeng@uic.edu.cn

 Jianxiong Guo
 jianxiongguo@bnu.edu.cn

 Jiong Lou
 lj1994@sjtu.edu.cn

 Tian Wang
 tianwang@bnu.edu.cn

 Weijia Jia
 jiawj@bnu.edu.cn

1 Guangdong Key Lab of AI & Multi-Modal Data Processing,
Beijing Normal University-Hong Kong Baptist University
United International College, Zhuhai 519087, China

2 Institute of Artificial Intelligence and Future Networks,
Beijing Normal University, Zhuhai 519087, China

3 Department of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-025-00186-z&domain=pdf
http://orcid.org/0009-0008-4152-1570
http://orcid.org/0000-0002-9375-4818
http://orcid.org/0000-0002-0994-3297
http://orcid.org/0000-0001-9245-2626
http://orcid.org/0000-0003-4819-621X
http://orcid.org/0000-0003-1000-3937

 W. Peng et al.

LeastAllocated, to achieve different goals like select-
ing nodes with pre-existing container images or those with
balanced resource usage (Rejiba and Chamanara 2022).
However, few default scheduling strategies in edge comput-
ing take into account the limited bandwidth and historical
user request data, which is crucial for latency-sensitive edge
users and resource-constrained servers.

Existing research shows that default Kubernetes schedul-
ing algorithms are poorly suited for edge computing environ-
ments due to their limited resources, geographic dispersion,
and network instability (Zhu et al. 2021; Xing et al. 2022;
Carrión 2022). To address this, container management tools
like KubeEdge (Xiong et al. 2018), K3s (2024), and Akraino
(2024) extend Kubernetes to the edge by adding features
such as robust management and MQTT support (Xiong et al.
2018). Additionally, tools like Koordinator (2024), Volcano
(2024), and Katalyst (2024) enhance Kubernetes for distrib-
uted scenarios by improving QoS support. However, these
tools not only neglect the issue of limited bandwidth in edge
computing, but also fail to adequately address the problems
of resource fragmentation and load imbalance as well. This
results in degraded system stability and response speed, mak-
ing the downloading of container images time-consuming (Fu
et al. 2020). Container images are stored in layers, and repeated
downloads can be reduced by sharing these layers (Gu et al.
2023). Existing researches have explored layer sharing and
proposed algorithms for container placement (Tang et al. 2023;
Gu et al. 2021), migration (Tang et al. 2024), and image down-
loads (Gu et al. 2023; Lou et al. 2022) based on layer sharing.
Despite this, a systematic implementation of a layer sharing
scheduler is still necessary. Implementing this scheduler in
edge environments is crucial to reduce deployment cost for
many edge clusters managed by Kubernetes.

Implementing the layer-aware, resource-balanced, and
request-adaptive scheduler in edge clusters is highly challeng-
ing. Using the scheduling framework of Kubernetes (Sched-
uling Framework 2024), we can create various extension
points like Filter, Score, and Bind. The Filter extension point
eliminates nodes that cannot run the container. The Score then
ranks the remaining nodes. The scheduler calls each scoring
extension point for every node. Finally, the Bind extension
point binds a container to a node. However, the first chal-
lenge remains on how to automatically obtain and score layer
information for nodes. Currently, most existing work lacks sys-
tematic implementation, with some basic schedulers requir-
ing prior knowledge of layer information (Fu et al. 2020). To
fill in such gaps, we develop a custom layer-aware scheduler
within the Kubernetes scheduling framework that automati-
cally retrieves and updates layer information from the Docker
registry, integrating seamlessly with Kubernetes deployments
(2024). Layer information is periodically retrieved from
the registry and cached locally. The scheduler analyzes the
required layer information for new container deployment tasks,

and gathers the existing image layer information from each
edge node, scores and rates the nodes, finally deploys contain-
ers accordingly.

However, using only the layer-aware scheduler will make
Kubernetes tend to schedule containers on edge nodes with
more layers, leading to higher load on these nodes with oth-
ers remaining underutilized and generating a large amount
of resource fragmentation. This brings up a second chal-
lenge, i.e., how to make container scheduling decisions that
meet user needs while ensuring efficient utilization of node
resources. Existing research has considered the resource
utilization when scheduling containers (Gunasekaran et al.
2020), including the default scheduling policy NodeRe-
sourcesBalancedAllocation (Scheduler Configu-
ration 2024). However, these studies cannot dynamically
focus on different scheduling strategies based on user needs,
nor can they effectively combine layer sharing to further
reduce deployment costs while maintaining load balancing.
To address these issues, we propose a resource-balanced,
user request-adaptive strategy combined with layer-aware
approaches and Kubernetes scheduling plugins to derive
new scores through weighted calculations. Moreover, static
weights for various metrics do not effectively adapt to load
changes and cannot fine-tune scheduling parameters for dif-
ferent network environments, which is essential for ensur-
ing QoS for various services (Li et al. 2012). Therefore,
we further design a Layer-aware, Resource-balanced, and
Request-adaptive container Scheduler (LR2Scheduler) for
edge computing. The LR2Scheduler dynamically adjusts the
layer score weight, lowering it during high load to minimize
impact and raising it during low load to decrease download
costs and shorten container startup time.

In this paper, we propose and implement the LR2

Scheduler within the Kubernetes scheduling framework
for edge computing. As shown in Fig. 1, LR2Scheduler
employs a layer-sharing scoring mechanism that dynami-
cally adapts to resource utilization and user request using
scoring extension points, the Kubernetes API, etcd, and
Kubelet. When a new container request is sent from the
user, LR2Scheduler first retrieves the required resource
information and layer information from the user, and
obtains the remaining resource information and locally
stored layer information from each node. It then scores
the nodes using all the information and combines the
score with the score of default Kubernetes scheduler to
minimize container deployment costs while maintain-
ing efficient resource utilization. Finally, the scheduler
selects the highest-scoring node for task deployment. The
scheduler dynamically adjusts the weights of all scoring
mechanisms and integrates well with various scheduling
plugins, providing good scalability. We have implemented
this custom scheduler in Kubernetes and verified it in a

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

real cluster environment. Experimental results show that
our LR2Scheduler lowers deployment costs while consid-
ering load balancing.

In this extended version of our previous work (Tang
et al. 2024), we aim to minimize resource fragmentation
and optimize the dynamic weight algorithm to improve
adaptability and effectiveness in dynamic environments.
First, we improve the problem modeling by incorporating
a resource demand adaptive strategy and refining the final
score of scheduler based on real-world adjustments to bet-
ter capture features of user demand. The strategy is used to
determine whether there is similarity in the history of user
requests, reducing resource fragmentation, enabling the
cluster to deploy more containers. Second, we improve the
dynamic weight mechanism by changing its values from
discrete to continuous and implement real-time weight
adjustments for the three scheduling strategies that we
used, leading to better decision-making and minimized
adverse effects compared to previous work (Tang et al.
2024). Additionally, we refine the resource balance sched-
uling mechanism by reducing the occurrence of high-load
nodes. We further validate the effectiveness and adapt-
ability of our LR2Scheduler through experimental testing.

In summary, the contributions of this paper are as
follows:

1. We propose and implement a layer-aware, resource-
balanced, and request-adaptive container scheduler,
which autonomously calculates scores using the exist-
ing resource information on nodes, user requirements,
and layer information. This scheduler can effectively
reduce resource fragmentation and lower deployment
costs when deploying containers.

2. We present a resource-adaptive weight adjustment
algorithm that enhances load balancing and optimizes
resource utilization. This method reduces layer down-
load costs by combining resource demand adaptive
scheduling plugins with layer scheduling plugins and the
official scheduler. This approach reduces layer download
costs during low load periods while balancing container
distribution among nodes during high load.

3. We implement our LR2Scheduler in a real Kubernetes-
based edge system. The experimental results show that
our LR2Scheduler has good scalability. It can effectively
reduce the deployment cost of containers and balance
the resource load of different nodes.

The rest of this paper is organized as follows. In Sect. 2,
the related work is introduced; Sect. 3 describes the system
model and problem statement; Sect. 4 presents the dynamic
adaptation layer scheduling algorithm based on resource

Node 1

Layer1

Layer2

Exists
LR2Scheduler based on Scheduling Framework

K
u
b
e-

ap
is

er
v
er

Sc
or
e

N
o
rm

al
iz

e

S
co

re

R
es

er
v

e

P
re

fi
lt

er

F
il

te
r

P
re

S
co

re

MetaData Cache

ImageLocality

NodeResourceAllocation

LayerScoring

Plugins

……

Docker Registry

User

Node 2

Layer5

Layer6

Exists

Init Container

Layer3

Layer7

Requires

Node 3

Layer3

Layer4

Exists

Downloads Layer7

Container Request

Final score

with dynamic

weights

Watcher

EvalScoring

STDScoring

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Fig. 1 Overview of LR2Scheduler

 W. Peng et al.

demand; Sect. 5 details the system implementation; Sect. 6
evaluates performance; Sect. 7 concludes the paper.

2 Related work

2.1 Resource allocation in edge computing

Significant advancements have been made in resource
allocation research for edge computing (Wang et al. 2020,
2021). For example, Xing et al. (2023) model the computing
resources of the edge nodes uniformly and introduce meth-
ods for heterogeneous task classification and recognition.
Cai et al. (2024) present an explainable online approxima-
tion algorithm to optimize resource allocation, balancing
model training and inference accuracy. Ouyang et al. (2023)
propose a reactive provisioning approach for hybrid resource
provisioning without prior knowledge of future system
dynamics. Xu et al. (2024) formulate the dynamic parallel
multi-server selection and allocation problem to minimize
task computing and transmission times. Chen et al. (2024)
develop an algorithm to minimize system energy consump-
tion while meeting performance requirements for dynamic
task offloading and resource allocation. Xu et al. (2023)
explore joint channel estimation and resource allocation
in Intelligent Reflecting Surface-aided edge computing
systems.

In large-scale task scheduling within cloud environments,
existing mechanisms do not adequately address the specific
characteristics of user tasks, limiting Kubernetes’s ability
to optimize performance (Dong et al. 2024). Analyzing
users’ historical deployment tasks can reveal patterns in
their needs, enabling better resource allocation, minimizing
fragmentation, and predicting future resource requirements
(Xie et al. 2019).

2.2 Layer‑aware container scheduling

Layer-aware scheduling research is in its early stages. Rong
et al. (2022) analyze 3735 images from Docker Hub and
find that caching image layers on destination servers reduces
migration time. Ma et al. (2018) propose an edge comput-
ing platform that uses the layered features of the storage
system to reduce the synchronization cost of the file system.
Lou et al. (2022) address the container assignment and layer
sequencing problem, proving its NP-hardness, and proposing
a layer-aware scheduling algorithm. Gu et al. (2021) study a
layer aware microservice placement and request scheduling
at the edge. Dolati et al. (2022) address essential aspects of
orchestrating services such as downloading and sharing con-
tainer layers and steering traffic among network functions.
Liu et al. (2022) study the optimal deployment strategy to

balance layer sharing and chain sharing of microservices to
minimize image pull delay and communication overhead.

However, existing research on layer-aware container
scheduling and resource allocation has not effectively inte-
grated layer sharing information with load balancing and
user demands. Although some studies have made initial
considerations (Tang et al. 2023; Gu et al. 2021; Tang et al.
2024), they lack focus on real system implementation or
information retrieval. This paper presents LR2Scheduler, an
efficient and scalable solution that addresses this gap in cur-
rent research.

3 System model and problem formulation

3.1 System model

In edge computing, services are created on specific edge
nodes, requiring containers to run. These containers rely on
images, which are built from multiple layers.

Overview: A set of tasks K = {k1, k2, ..., k|K|} is offloaded
from users to edge nodes for processing, where | ⋅ | is used
to indicate the number of elements in the set, e.g., |K| is the
number of tasks. To handle these tasks, a set of containers
C = {c1, c2, ..., c|C|} is deployed on the nodes. Each container
requires an image file from the set M = {m1,m2, ...,m|M|} .
Since requesting a container is equivalent to requesting
its corresponding image, and the only difference is a writ-
able container layer, these concepts are unified (Zhao et al.
2020; Tang et al. 2023). Essentially, a task requests a con-
tainer, which in turn requires specific layers from the set
L = {l1, l2, ..., l|L|}.

Edge node: The set of edge nodes, N = {n1, n2,… , n|N|}
is deployed at the edge of the core network. Each node n ∈ N
maintains three sets: running containers Cn(t) ⊆ C , local
images Mn(t) ⊆ M , and local layers Ln(t) ⊆ L . Addition-
ally, each node has a CPU core number pn , memory capacity
en , bandwidth bn , and storage capacity dn . A node can run a
maximum of Cn containers simultaneously.

Layer: The set of layers in container c ∈ C is
Lc = {xl

c
∣ l ∈ L} , where xl

c
= 1 if container c contains layer

l, and xl
c
= 0 otherwise. The size of layer l ∈ L is dl.

Task: For each task k ∈ K generated by a user at time
t, the requested CPU resource is pk and the requested con-
tainer is ck . After scheduling, the node assigned to this task
is nk = {un

k
∣ n ∈ N} , where un

k
= 1 if task k is scheduled to

node n, otherwise un
k
= 0.

3.2 Modeling of cost and score

In edge computing, limited bandwidth and large image
sizes result in significant download cost when deploying
containers. Compared to this, container startup cost is

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

minimal (Tang et al. 2023). Therefore, our paper focuses
on download cost .

For task k requesting container c, the requested layers are
Lc . At time t, the layers stored on edge node n are Ln(t) . The
layers from Lc found on node n are Lc ∩ Ln(t) . The download
cost Cn

c
(t) for deploying container c on node n is:

The download time for node n can be obtained as

Moreover, the total size Dn
c
(t) of local layers for node n is:

Assume that the maximum score before weighting for each
node is denoted as MaxScore (Carrión 2022). Then, the layer
sharing score Sk,n

Layer
(t) of node n at time t is calculated as

follows:

The layer reuse index r is used to measure the utilization of
image layer resources:

To calculate the optimal deployment mechanism score, we
first consider the set of the five most recent tasks, including
the current one, deployed in the cluster. For each task, the
ratio of requested memory ei to requested CPU pi is calcu-
lated for i ∈ [1, 5] . The ratio e6

p6
 is calculated for the node’s

remaining resources. Then, the standard deviation STDk,n

Eval
(t)

of the resource demands and node resources is calculated to
measure their correlation:

where � is the average ratio of local resources and historical
task resource demands, obtained as:

Using the standard deviation STDk,n

Eval
(t) , the optimal deploy-

ment mechanism score Sk,n

Eval
(t) of node n is calculated as

follows:

(1)C
n
c
(t) =

∑

l∈Lc⧵Ln(t)

dl.

(2)T
k,n =

C
n
k
(t)

bn
.

D
n
c
(t) =

∑

l∈Lc∩Ln(t)

dl.

(4)S
k,n

Layer
(t) =

D
n
c
(t)

∑
l∈Lc

dl
×MaxScore.

(5)r =
(
Al∈Lc∩Ln(t)

× 0.3
)
+
[
D

n
c
(t) × 0.7

]
.

(6)STD
k,n

Eval
(t) =

√√√√1

6

6∑

i=1

(xi − �)2,

(7)� =
1

6

6∑

i=1

ei

pi
.

To reduce the occurrence of load imbalance, the resource
balancing score Sk,n

Bal
(t) is modified as follows:

where STDk,n

Node
(t) is the system resource standard deviation:

The above scores of the scheduler are then combined using
dynamic weights. The weight of the layer sharing score is
denoted as Wk,n

Layer
(t),

where STDS(t) = min(STD
k,n

Node
(t), STD

k,n

Eval
(t)).

The weight of the optimal deployment mechanism score
W

k,n

Eval
(t) is:

The weight of the resource balancing mechanism score
W

k,n

Bal
(t) is:

Moreover, the evaluation score of the default Kubernetes
scheduler is denoted as Sk,n

K8s
(t) . The weighted score Sk,n(t)

(with weights satisfying w ∈ [0, 5]) can be calculated as:

The node nk for task k is selected as the scheduling node with
the highest score:

3.3 Layer‑aware and request‑aware problem

Constraints: During the scheduling process, constraints are
used for prefiltering and filtering plugins. The storage capac-
ity of each node must satisfy:

(8)S
k,n

Eval
(t) = MaxScore ×

(
1 − STD

k,n

Eval
(t)
)
.

(9)
S
k,n

Bal
(t) =MaxScore ×

(
1 − STD

k,n

Node
(t) −

pn(t)

pn

−
en(t)

en
− 0.5 ×

qn(t)

qn

)
,

(10)STD
k,n

Node
(t) = 0.5 ×

||||
pn(t)

pn
−

en(t)

en

||||
.

(11)W
k,n

Layer
(t) =

D
n
c
(t)

2

STDS(t)

=
D

n
c
(t) × STDS(t)

2
,

(12)W
k,n

Eval
(t) =

2

STD
k,n

Eval
(t)

D
n
c
(t)

=
2

STD
k,n

Eval
(t) ×D

n
c
(t)

.

(13)W
k,n

Bal
(t) =

2

STD
k,n

Node
(t)

D
n
c
(t)

=
2

STD
k,n

Node
(t) ×D

n
c
(t)

.

(14)
S
k,n(t) =W

k,n

Layer
(t) × S

k,n

Layer
(t) +W

k,n

Eval
(t) × S

k,n

Eval
(t)

+W
k,n

Bal
(t) × S

k,n

Bal
(t) + S

k,n

K8s
(t).

(15)nk = argmax
n

S
k,n(t).

 W. Peng et al.

Moreover, the running container number limit is as follows:

And each task should only be scheduled to one node:

Problem statement: The goal of the layer-aware scheduler
is to minimize the download cost, i.e., to maximize the layer
sharing score Sk,n

Layer
(t) . The problem can be defined as

follows:

Similarly, the goal of resource demand adaptation is to maxi-
mize the deployable task volume, i.e., to maximize the eval-
uation score Sk,n

Eval
(t) . The problem can be defined as follows:

By integrating resource demand adaptation, layer sharing
scores, and other scheduling plugins, this problem can adapt

(16)C
n
c
(t) +

∑

l∈Ln(t)

dl ≤ dn, ∀t,∀n.

(17)|Cn(t)| ≤ Cn.

(18)
∑

n∈N

un
k
= 1, ∀k.

(19)
maxSLayer =

∑

k∈K

S
k,n

Layer
(t),

s.t. Eqs.(16), (17), (18).

(20)
maxSEval =

∑

k∈K

S
k,n

Eval
(t),

s.t. Eqs. (16), (17), (18).

to different forms. For example, when combined with the
default Kubernetes scheduler:

4 Proposed design of LR2Scheduler

4.1 LR2Scheduler

The LR2Scheduler algorithm, as shown in Algorithm 1,
takes task k and a set of edge nodes N as input and out-
puts the selected node nk for container deployment. First,
the scores are initialized to 0. Then, the scores for the three
scheduling strategies-layer sharing, resource demand adapta-
tion, and node resource balancing-are calculated based on
Eqs. (4), (8), (9), respectively. Next, the weights of the above
three strategies are calculated based on Eqs. (11), (12),
(13), dynamically balancing the system’s existing resources
with user demands. Finally, the weighted scores of these
three strategies are combined with the evaluation scores of
the Default Scheduler plugin (as in Eq. (14)). Each task is
deployed to the node with the highest score.
Algorithm 1 LR2Scheduler

(21)
maxS =

∑

k∈K

S
k,n(t),

s.t. Eqs. (16), (17), (18).

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

4.2 Scalability of LR2Scheduler

Next, we discuss the extensibility of LR2Scheduler. As
shown in Algorithm 1, LR2Scheduler first evaluates the
scores for resource demand adaptation and layer sharing.
Then, it calculates dynamic weights and combines the scores
with other scheduling plugins to obtain the final weighted
score. The method of adjusting dynamic weights can be eas-
ily extended to allow LR2Scheduler to work with any sched-
uling plugin, ensuring the performance of other schedulers
while minimizing container deployment costs. The extensi-
bility of LR2Scheduler is mainly reflected in three aspects:
the conditions for dynamic weight adjustment, the values of
dynamic weights, and the combination of schedulers. Details
are as follows:

Conditions for dynamic weight adjustment: The weights
of the three strategies in Algorithm 1 consider the node’s
resource demand adaptation, resource balancing, and layer
sharing scores. In fact, other factors can also be taken
into account. For example, storage space, memory, GPU
resources, and node availability labels can be further ana-
lyzed to enhance dynamic weight adjustment methods.

Values for dynamic weight: This method can also be used
to adjust dynamic weights to extend LR2Scheduler. For
example, it can set other weights that better match individual
needs. Moreover, we can add more conditions or piecewise
functions, like a function � = f (S

k,n

Weight
(t)) or a neural net-

work to adjust the weight.
Combining schedulers: LR2Scheduler can also be inte-

grated with other Kubernetes schedulers. In the next section,
we will discuss the implementation of LR2Scheduler. We
have combined LR2Scheduler with some default plugins, as
shown below:

1. ImageLocality that prefers nodes with the container
images already present.

2. TaintToleration that implements taints and tolera-
tions, reducing deployment priority for tainted nodes.

3. NodeAffinity that implements node selectors and affin-
ity, scoring nodes higher that meet more affinity condi-
tions. Preference is given to nodes that satisfy the speci-
fied rules.

4. PodTopologySpread that implements container
topology spread by selecting the node with the highest
score for each topology pair.

5. NodeResourcesFit that verifies if the node has all
the resources requested by the container. The default
strategy is LeastAllocated.

6. VolumeBinding that verifies if the node can bind the
requested volumes, prioritizing the smallest volume that
meets the required size.

7. InterPodAffinity that implements inter-Pod affinity
and anti-affinity similar to NodeAffinity.

Notably, the plugins mentioned above can be enabled or dis-
abled individually, and they can also be combined in various
ways to achieve different effects. The main extension point
of LR2Scheduler is the score; by integrating resource alloca-
tion strategies and layer sharing into the final differentiation,
it can adapt to various scheduling requirements while mini-
mizing container deployment costs. Overall, LR2Scheduler
has distinctive extensibility.

5 System implementation

As shown in Fig. 2, LR2Scheduler is implemented within the
Kubernetes system using the scheduling framework (Sched-
uling Framework 2024). LR2Scheduler is deployed to the
system using deployment (Deployments 2024). First, the
user sends a container deployment request, specifying the
container and resource limits, and sets the scheduler to LR2

Scheduler. Upon receiving the request, the Kubernetes API
Server invokes LR2Scheduler for scheduling. LR2Scheduler
first updates the layer information from the registry, then
performs layer matching and scoring. Next, LR2Scheduler
starts resource matching and evaluation. After the evalu-
ation is completed, it calculates the dynamic weights and
final scores, as detailed in Algorithm 1. Once the score
is obtained, the Kubernetes API selects the node with the
highest container deployment score to complete the entire
scheduling process. Here are some key details in the imple-
mentation process of the LR2Scheduler as shown in Fig. 2.

① Update layer information from Registry. Existing meth-
ods cannot automatically retrieve layer information due to
challenges in real-time reading and parsing, unstable band-
width causing connection interruptions in edge computing,
and read permission issues from container isolation (Fu et al.
2020). Currently, there is no automatic way to query mir-
ror layer information. We address these issues by creating a
goroutine to periodically fetch all images and their tags
from the Docker registry’s /v2/_catalog endpoint. At service
start, the Registry class initializes. The method Registry
Watcher is called, and it waits for 10 s by default to access
the registration interface. It filters layer IDs and sizes, stores
the data keyed by image name and tag in a JSON file as
shown in Listing 1, and uses this cached file as the metadata
to compare image sizes through layer information lookup.
The retrieved data is formatted into a map[string]ImageM-
etadata structure and saved in the cache.json file.

② Match and score layers.Determining the size of the
layers and aligning them is challenging. Due to the stor-
age structure, we cannot directly obtain layer size from the

 W. Peng et al.

image ID. Therefore, we utilize the cache.json file as
follows:

1. The scheduler retrieves scheduled container information
from *k8s.io/api/core/v1.Pod. The image name and tag
are accessible via pod.spec.Containers[].Image.

2. To obtain the layer sizes from the Registry metadata,
we use the image and tag as keys to search the cache.
json file, returning the layer information ImageM-
etadata for that image.

3. Extract layer information from cached image names and
tags in the cache.json file.

4. To calculate the node score, the node information includ-
ing available resource and local images is obtained using
the Handle method from the base class (framework.
ScorePlugin), specifically k8s.io/kubernetes/pkg/sched-
uler/framework.Handle. This includes the node’s IP
address. By calling the Docker API at http://IP:2375,
all cached images can be retrieved.

5. Compare the container layers from step 2 with the
cached layers from step 4, extract the matching cached
data, and calculate the total cached layer size.

③ Dynamic Weight Calculation. The challenge is how to
determine the suitable weights and adjustments based on
different needs as discussed in Sect. 3.2. LR2Scheduler cal-
culates dynamic weights through the following steps:

1. Using node information (*k8s.io/kubernetes/pkg/sched-
uler/framework.Nod eInfo), we can access detailed
information about all available resources on the current
node and all running containers. This includes: the usage
percentage of resources (CPU, memory, storage), the
number of running Pods, and the resource consumption
of each Pod.

2. Calculate the available CPU and memory percentages by
dividing the total requested resources of all containers
by the node’s available resources. Then, compute the
standard deviation (STD).

3. Return different weights based on Eqs. (11), (12), (13).

Docker RegistryContainer Deployment Request

LR2Scheduler

SDK docker-registry-client k8s.ioAPI Server

Layers
Memory

CPU

etcd
watchgRPC

Node 1

Layer

Resource

Exists

Update Layer Information from Registry

Data Input Data Input Data Input

LR2Plugin Score

Dynamic Weight i

LR2Scheduler Score

Score

LR2PluginScore

OtherPluginsScore

Dynamic Weight Calculating

Layer Matched Size NodeResourceUsers Request Resource

Match and Score Layers

Layer Scores

(Matched by ID)

Local
Resource

CPU

Memory

Layers

Requires

CPU

Memory

Layers

EvalSTD BalanceSTD

Node 1

Layer

Resource

Exists

Node 1

Layer

Resource

Exists

Fig. 2 LR2Scheduler implementation in Kubernetes system

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

Listing 1 Data Structure

6 Experiments

6.1 Experimental settings

To verify LR2Scheduler, we set up a Kubernetes cluster
with 1 master node and 4 worker nodes. All the nodes have
Linux CentOS 7 installed. The Kubernetes version used
is v1.23.8. The container runtime is Docker with version
20.10.8. The Kubelet and Kube-proxy versions are both
v1.23.8. All nodes have 4-core CPUs. The master node has
8GB of memory and a 60GB hard drive. Worker node 1 has
4GB of memory and a 30GB hard drive. Worker node 2 has
2GB of memory and a 30GB hard drive. Worker nodes 3 and
4 each have 4GB of memory and a 20GB hard drive. The
custom scheduler is implemented in Go language, version
go1.18linux/amd64.

We have deployed a private repository using Docker reg-
istry. We select some images from Docker Hub and upload
them to our private repository, including WordPress, Ghost,
GCC, Redis, Tomcat, MySQL, etc. During the experiments,
we randomly request these images, setting random CPU and
memory limits for each request. Each image consists of sev-
eral layers, and the information about these layers can be

retrieved from the registry. We conduct multiple experiments
by deploying different numbers of workers and setting vari-
ous bandwidth limits.

The experiments compare LR2Scheduler with the Default
Scheduler and the Static Layer scheduler. The Default
Scheduler enables scheduling plugins as described in
Sect. 3.2. The Static Layer Scheduler uses the layer-aware
scheduling plugin as a baseline, with a weight setting of 2
while weights of other plugins are 1. The maximum score
MaxScore for the node before weighted is set to 100.

6.2 Experimental results

Performance with different number of pods. Kubernetes
operates on Pods, which in our case are equivalent to single-
container Pods. Figure 3a–c show that due to the Default
Scheduler being a local optimization algorithm, it easily
generates resource fragments. When some resources have
been completely consumed, it will leave other resources
unusable, while using LR2Scheduler to schedule nodes
can generate less resource fragmentation. Figure 3d and e
demonstrate that in the scheduling process, compared to the
Default Scheduler, LR2Scheduler can maintain a lower level

 W. Peng et al.

of standard deviation, indicating that LR2Scheduler can help
clusters achieve better balance. Additionally, the resource
balance of the nodes after scheduling is significantly bet-
ter than that achieved with the Default Scheduler, reducing
the occurrence of load imbalance. Figure 3f illustrates that
using the LR2Scheduler decreases the number of nodes with
resource usage over 80% by 50% compared to the Default
Scheduler for the same tasks.

Performance with different number of nodes. To evaluate
the performance under different number of nodes, experi-
ments are conducted using 3, 4, and 5 edge nodes. With
the help of resource request history evaluation strategy, the
total number of tasks that can be deployed in the cluster has
increased. Figure 4a indicates that the LR2Scheduler can
deploy the most containers, averaging 24% and 50% more
than the official Default Scheduler and the Layer scheduler,
respectively. Figure 4b shows that, for tasks with identical

configurations, the Layer Scheduler and LR2Scheduler sig-
nificantly reduce download volume compared to the Default
Scheduler. The average reduction is respectively 39% and
35%. As shown in Fig. 4c, the Layer Scheduler reduces the
average disk usage by 45%, while LR2Scheduler reduces the
average disk usage by 41%. Although the Layer Scheduler
performs a bit better in download size, the LR2Scheduler
can dynamically adjust the weights of different scheduling
strategies, effectively balancing resource allocation. This is
particularly evident in cluster resource balance. As shown
in Fig. 4d, the slight advantage of the Layer Scheduler in
metrics such as download volume comes at a significant cost
to cluster resource balance (according to Eq. (10)), resulting
in an average reduction of 33% in the number of deployable
tasks compared to the LR2Scheduler.

Performance with different bandwidth. Fig. 5 shows the
download time at various bandwidths. It is clear that LR2

Table 1 Performance analysis
for 20 containers

Scheduler Size (MB) Reusage STD # Scheduler Size (MB) Reusage STD

1 Default 3 22.6 0.02 11 Default 3 26.42 0.11
Layer 1 0.9 0.07 Layer 1 3.6 0.27
LR

2Scheduler 3 0 0.02 LR
2Scheduler 4 2.4 0.15

2 Default 490 177.76 0.03 12 Default 474 141 0.14
Layer 434 202.4 0.05 Layer 141 275.9 0.31
LR

2Scheduler 434 72.2 0.05 LR
2Scheduler 141 233.6 0.18

3 Default 380 122.38 0.03 13 Default 164 110.71 0.19
Layer 201 187.9 0.02 Layer 164 167.9 0.26
LR

2Scheduler 201 127.6 0.02 LR
2Scheduler 164 118.7 0.21

4 Default 160 77.17 0.04 14 Default 52 42.4 0.23
Layer 111 90.3 0.1 Layer 22 16.5 0.29
LR

2Scheduler 111 71.58 0.06 LR
2Scheduler 55 0 0.24

5 Default 15 28.55 0.08 15 Default 37 36.65 0.17
Layer 15 24 0.12 Layer 28 32.1 0.32
LR

2Scheduler 15 19.5 0.08 LR
2Scheduler 29 19.5 0.21

6 Default 6 29.32 0.12 16 Default 356 75.48 0.19
Layer 6 5.1 0.16 Layer 6 1.8 0.36
LR

2Scheduler 9 2.4 0.09 LR
2Scheduler 6 251.6 0.25

7 Default 416 162.29 0.15 17 Default 518 77.59 0.21
Layer 416 154.1 0.2 Layer 99 80.6 0.35
LR

2Scheduler 416 29.3 0.13 LR
2Scheduler 189 47.3 0.21

8 Default 285 90.74 0.12 18 Default 238 64.6 0.17
Layer 66 174.6 0.24 Layer 208 107 0.3
LR

2Scheduler 66 154.8 0.18 LR
2Scheduler 228 99.8 0.26

9 Default 54 34.59 0.14 19 Default 113 32.81 0.19
Layer 24 27.8 0.27 Layer 28 15.8 0.33
LR

2Scheduler 24 14.3 0.16 LR
2Scheduler 22 1.7 0.23

10 Default 49 21.93 0.13 20 Default 46 48.19 0.24
Layer 21 33.9 0.3 Layer 2 16.7 0.34
LR

2Scheduler 49 24.12 0.15 LR
2Scheduler 50 33.63 0.22

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

Scheduler has a more pronounced advantage when the edge
network bandwidth is low. Overall, compared to the Default
Scheduler, LR2Scheduler reduces the average download time
by 47%. Due to the combination of layer scheduling plugins,
LR2Scheduler shows a significant improvement over the
Default Scheduler. Figure 6 shows that both Layer Scheduler
and LR2Scheduler demonstrate significantly higher cumula-
tive reuse index compared to the default scheduler as the
number of deployed containers increases. LR2Scheduler’s
effectiveness is further demonstrated by its ability to con-
sider additional metrics, such as resource balancing.

Moreover, as shown in Table 1, we have detailed the
download size, reusage, and resource balancing (STD)
for deploying 20 containers. While LR2Scheduler may
not have the smallest download size at each step, it ulti-
mately results in almost the lowest total download cost and
reusage while considering resource balancing, demonstrat-
ing its long-term effectiveness despite room for improve-
ment. Besides the scalability discussed in Sect. 4.2,

reinforcement learning algorithms can also be considered
to optimize container deployment costs by accounting for
long-term benefits.

In summary, the LR2Scheduler effectively reduces
download costs while maintaining efficient resource uti-
lization. Additionally, it allows for the selection of differ-
ent scheduling strategies or adjustment of weights based
on specific needs. The effectiveness of the LR2Scheduler
is further reflected in its ability to consider additional
metrics.

7 Conclusion

In this paper, we proposed and implemented a layer-aware,
resource-balanced, and request-adaptive container sched-
uler for edge computing. First, we designed a user request
evaluation plugin, and then integrated it with a layer-aware
mechanism to form a Kubernetes scheduling scheduler

Fig. 3 Performance with different numbers of deployed pods

 W. Peng et al.

that can effectively reduce the network transmission cost
between container deployments, minimize resource frag-
mentation, and meet resource balance and other indicators.
Finally, by using the Kubernetes scheduling framework,
the LR2Scheduler was implemented. The experimental
results in the Kubernetes system show that this scheduler
improved resource utilization rates, optimized deploy-
ment costs, and enhanced system performance. This study

demonstrates that in real systems, the LR2Scheduler can
achieve the flexibility of shared scheduling among layers
based on resource requirements, while also highlighting
further optimization opportunities. In future work, we
will design scheduling algorithms using reinforcement
learning and other long-term optimization strategies, and
implement them in Kubernetes. Moreover, we will explore
cloud-edge and edge-edge collaborative layer sharing to

Fig. 4 Performance with different number of nodes

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

reduce container startup time by transferring layers from
other edge nodes.

Funding This work was supported in part by the Chinese National
Research Fund (NSFC) under Grant 62272050 and Grant 62302048;
in part by the Guangdong Key Lab of AI and Multi-modal Data Pro-
cessing, United International College (UIC), Zhuhai under 2023–2024
Grants sponsored by Guangdong Provincial Department of Edu-
cation; in part by the Institute of Artificial Intelligence and Future
Networks (BNU-Zhuhai) and Engineering Center of AI and Future
Education, Guangdong Provincial Department of Science and Tech-
nology, China; Zhuhai Science-Tech Innovation Bureau under Grant
No. 2320004002772; and in part by the Interdisciplinary Intelligence
SuperComputer Center of Beijing Normal University (Zhuhai).

Declarations

 Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

References

Akraino.: https:// www. lfedge. org/ proje cts/ akrai no/ (2024)
Brooker, M., Danilov, M., Greenwood, C., Piwonka, P.: On-demand

container loading in {AWS$\}$ lambda. In: Proceedings of 2023
USENIX Annual Technical Conference (USENIX ATC 23), pp.
315–328 (2023)

Cai, H., Zhou, Z., Huang, Q.: Online resource allocation for edge
intelligence with colocated model retraining and inference. In:
Proceedings of 2024 IEEE Conference on Computer Commu-
nications (INFOCOM), pp. 1–9 (2024). IEEE

Carrión, C.: Kubernetes scheduling: taxonomy, ongoing issues and
challenges. ACM Comput Surv 55(7), 1–37 (2022)

Chen, Y., Xu, J., Wu, Y., Gao, J., Zhao, L.: Dynamic task offloading
and resource allocation for noma-aided mobile edge comput-
ing: an energy efficient design. IEEE Trans Serv Comput 17(4),
1492–1503 (2024)

Cui, H., Tang, Z., Lou, J., Jia, W., Zhao, W.: Latency-aware container
scheduling in edge cluster upgrades: A deep reinforcement
learning approach. IEEE Transactions on Services Computing
(2024)

Deployments.: https:// kuber netes. io/ docs/ conce pts/ workl oads/ contr
ollers/ deplo yment/ (2024)

Dolati, M., Rastegar, S.H., Khonsari, A., Ghaderi, M.: Layer-aware
containerized service orchestration in edge networks. IEEE Trans
Netw Serv Manag 20(2), 1830–1846 (2022)

Dong, B., Yang, Q., Li, M.: M-rsf: a multilevel feedback queue task
scheduling mechanism for unikernel. J Commun 45(05), 54–69
(2024). https:// doi. org/ 10. 11959/j. issn. 1000- 436x. 20240 61

Fu, S., Mittal, R., Zhang, L., Ratnasamy, S.: Fast and efficient container
startup at the edge via dependency scheduling. In: Proceedings
of 3rd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge) (2020)

Gu, L., Zeng, D., Hu, J., Li, B., Jin, H.: Layer aware microservice
placement and request scheduling at the edge. In: Proceedings

Fig. 5 Performance with different bandwidth

Fig. 6 Accumulated Reusage

https://www.lfedge.org/projects/akraino/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://doi.org/10.11959/j.issn.1000-436x.2024061

 W. Peng et al.

of 2021 IEEE Conference on Computer Communications
(INFOCOM), pp. 1–9 (2021). IEEE

Gu, L., Huang, J., Huang, S., Zeng, D., Li, B., Jin, H.: Lopo: An
out-of-order layer pulling orchestration strategy for fast micros-
ervice startup. In: Proceedings of 2023 IEEE Conference on
Computer Communications (INFOCOM), pp. 1–9 (2023). IEEE

Gunasekaran, J.R., Thinakaran, P., Nachiappan, N.C., Kandemir,
M.T., Das, C.R.: Fifer: Tackling resource underutilization in
the serverless era. In: Proceedings of the 21st International Mid-
dleware Conference (Middleware), pp. 280–295 (2020)

K3s.: Lightweight Kubernetes. https:// k3s. io (2024)
Katalyst.: https:// gokat alyst. io (2024)
Li, F.-W., Wang, K., Zhu, J., et al.: Novel adapting packet scheduling

of td-hsupa. J Commun 33(5), 177–182 (2012)
Liu, Y., Yang, B., Wu, Y., Chen, C., Guan, X.: How to share: balanc-

ing layer and chain sharing in industrial microservice deploy-
ment. IEEE Trans Serv Comput 16(4), 2685–2698 (2022)

Lou, J., Luo, H., Tang, Z., Jia, W., Zhao, W.: Efficient container
assignment and layer sequencing in edge computing. IEEE
Trans Serv Comput 16(2), 1118–1131 (2022)

Ma, L., Yi, S., Carter, N., Li, Q.: Efficient live migration of edge
services leveraging container layered storage. IEEE Trans Mob
Comput 18(9), 2020–2033 (2018)

Ouyang, T., Zhao, K., Zhang, X., Zhou, Z., Chen, X.: Dynamic edge-
centric resource provisioning for online and offline services co-
location. In: Proceedings of 2023 IEEE Conference on Com-
puter Communications (INFOCOM), pp. 1–10 (2023). IEEE

QoS Based Scheduling System Koordinator.: https:// koord inator. sh
(2024)

Rejiba, Z., Chamanara, J.: Custom scheduling in Kubernetes: a sur-
vey on common problems and solution approaches. ACM Com-
put Surv 55(7), 1–37 (2022)

Rong, C., Wang, J.H., Liu, J., Yu, T., Wang, J.: Exploring the layered
structure of containers for design of video analytics applica-
tion migration. In: 2022 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 842–847 (2022). IEEE

Scheduler Configuration.: https:// kuber netes. io/ docs/ refer ence/ sched
uling/ config/ (2024)

Scheduling Framework.: https:// kuber netes. io/ docs/ conce pts/ sched
uling- evict ion/ sched uling- frame work/ (2024)

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision
and challenges. IEEE Internet Things J 3(5), 637–646 (2016)

Tang, Z., Lou, J., Jia, W.: Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing. IEEE
Trans Mob Comput 22(6), 3444–3459 (2023)

Tang, Z., Peng, W., Guo, J., Lou, J., Cui, H., Wang, T., Wu, Y., Jia,
W.: Lrscheduler: A layer-aware and resource-adaptive container
scheduler in edge computing. In: Proceedings of the 2024 20th
International Conference on Mobility, Sensing and Networking
(MSN), pp. 244–251 (2024). IEEE

Tang, Z., Mou, F., Lou, J., Jia, W., Wu, Y., Zhao, W.: Multi-user
layer-aware online container migration in edge-assisted vehicu-
lar networks. IEEE/ACM Trans Netw 32(2), 1807–1822 (2024)

Volcano.: https:// volca no. sh (2024)
Wang, T., Liang, Y., Zhang, Y., Zheng, X., Arif, M., Wang, J., Jin,

Q.: An intelligent dynamic offloading from cloud to edge for
smart iot systems with big data. IEEE Trans Netw Sci Eng 7(4),
2598–2607 (2020)

Wang, T., Liu, Y., Zheng, X., Dai, H.-N., Jia, W., Xie, M.: Edge-
based communication optimization for distributed federated
learning. IEEE Trans Netw Sci Eng 9(4), 2015–2024 (2021)

Xie, X., Zhang, Z., Wang, J., et al.: Cloud resource prediction model
based on triple exponential smoothing method and temporal
convolutional network. J Commun 40(8), 143–150 (2019).
https:// doi. org/ 10. 11959/j. issn. 1000- 436x. 20191 72

Xing, T., Barbalace, A., Olivier, P., Karaoui, M.L., Wang, W., Ravin-
dran, B.: H-container: enabling heterogeneous-isa container
migration in edge computing. ACM Trans Comput Syst 39(1–4),
1–36 (2022)

Xing, T., Cui, H., Chen, Y., Luo, Z., Guo, B., Yu, Z., Guo, X., Ma, Y.:
Harnessing edge computing resources for accelerating industrial
tasks. In: Proceedings of 2023 19th International Conference on
Mobility, Sensing and Networking (MSN), pp. 652–659 (2023).
IEEE

Xiong, Y., Sun, Y., Xing, L., Huang, Y.: Extend cloud to edge with
kubeedge. In: Proceedings of 2018 IEEE/ACM Symposium On
Edge Computing (SEC), pp. 373–377 (2018). IEEE

Xu, W., Yu, J., Wu, Y., Tsang, D.H.-K.: Joint channel estimation and
reinforcement learning-based resource allocation of intelligent
reflecting surface-aided multicell mobile edge computing. IEEE
Internet Things J 11(7), 11862–75 (2023)

Xu, C., Guo, J., Li, Y., Zou, H., Jia, W., Wang, T.: Dynamic parallel
multi-server selection and allocation in collaborative edge com-
puting. IEEE Trans Mob Comput 23(11), 10523–10537 (2024)

Zhao, N., Tarasov, V., Albahar, H., Anwar, A., Rupprecht, L., Skourtis,
D., Paul, A.K., Chen, K., Butt, A.R.: Large-scale analysis of
docker images and performance implications for container storage
systems. IEEE Trans Parallel Distrib Syst 32(4), 918–930 (2020)

Zhu, Z., Liu, Q., Liu, D., et al.: Research progress of mimic multi-exe-
cution scheduling algorithm. J Commun 42(5), 179–190 (2021).
https:// doi. org/ 10. 11959/j. issn. 1000- 436x. 20210 72

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Wentao Peng received the B.S.
degree in Information Engineer-
ing from Guangdong University
of Technology, China, in 2023.
He is currently pursuing an
M.Phil. degree with the Depart-
ment of Computer Science,
BNU-HKBU United Interna-
tional College, Zhuhai, China.
He is supervised by Prof. Weijia
Jia, and his research interests
include mobile edge computing,
Large Language Models, and
Embodied Intelligence.

Zhiqing Tang received the B.S.
degree from School of Commu-
nication and Information Engi-
neering, University of Electronic
Science and Technology of
China, China, in 2015 and the
Ph.D. degree from Department
of Computer Science and Engi-
neering, Shanghai Jiao Tong
University, China, in 2022. He is
currently an Assistant Professor
with the Advanced Institute of
Natural Sciences, Beijing Nor-
mal University, China. He is a
member of CCF/IEEE/ACM. He
has published more than 30

https://k3s.io
https://gokatalyst.io
https://koordinator.sh
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://volcano.sh
https://doi.org/10.11959/j.issn.1000-436x.2019172
https://doi.org/10.11959/j.issn.1000-436x.2021072

LR2Scheduler: layer‑aware, resource‑balanced, and request‑adaptive container scheduling…

peer-reviewed papers and been the reviewer for many famous interna-
tional journals/conferences. His current research interests include edge
computing, resource scheduling, and reinforcement.

Jianxiong Guo received his Ph.D.
degree from the Department of
Computer Science, University of
Texas at Dallas, Richardson, TX,
USA, in 2021, and his B.E.
degree from the School of
Chemistry and Chemical Engi-
neering, South China University
of Technology, Guangzhou,
China, in 2015. He is currently
an Associate Professor with the
Advanced Institute of Natural
Sciences, Beijing Normal Uni-
versity, and also with the Guang-
dong Key Lab of AI and Multi-
Modal Data Process ing ,

BNU-HKBU United International College, Zhuhai, China. He is a
member of IEEE/ACM/CCF. He has published more than 80 peer-
reviewed papers and been the reviewer for many famous international
journals/conferences. His research interests include social networks,
wireless sensor networks, combinatorial optimization, and machine
learning.

Jiong Lou received the B.S.
degree and Ph.D. degree in the
Department of Computer Sci-
ence and Engineering, Shanghai
Jiao Tong University, China, in
2016 and 2023. Since 2023, he
has held the position of Research
Assistant Professor in the
Department of Computer Sci-
ence and Engineering, Shanghai
Jiao Tong University, China. He
has published more than ten
papers in leading journals and
conferences (e.g., ToN, TMC
and TSC). His current research
interests include edge comput-

ing, task scheduling and container management.

Tian Wang received his BSc and
MSc degrees in Computer Sci-
ence from the Central South Uni-
versity in 2004 and 2007, respec-
tively. He received his PhD
degree in City University of
Hong Kong in Computer Science
in 2011. Currently, he is a pro-
fessor in the Institute of Artifi-
cial Intelligence and Future Net-
wo rk s , B e ij i n g No r m a l
University. His research interests
include internet of things, edge
computing and mobile comput-
ing. He has 27 patents and has
published more than 200 papers

in high-level journals and conferences. He has more than 16000 cita-
tions, according to Google Scholar. His H-index is 73.

Weijia Jia (Fellow, IEEE) is cur-
rently a Chair Professor, Director
of BNU-UIC Institute of Artifi-
cial Intelligence and Future Net-
works, Beijing Normal Univer-
sity (Zhuhai) and VP for
Research of BNUHKBU United
International College (UIC) and
has been the Zhiyuan Chair Pro-
fessor of Shanghai Jiao Tong
University, China. He was the
Chair Professor and the Deputy
Director of State Kay Laboratory
of Internet of Things for Smart
City at the University of Macau.
He received BSc/MSc from

Center South University, China, in 82/84 and Master of Applied Sci./
PhD from Polytechnic Faculty of Mons, Belgium in 92/93, respectively,
all in computer science. From 93-95, he joined German National
Research Center for Information Science (GMD) in Bonn (St. Augus-
tine) as a research fellow. From 95-13, he worked at City University of
Hong Kong as a professor. His contributions have been recognized as
optimal network routing and deployment, anycast and QoS routing,
sensors networking, AI (knowledge relation extractions; NLP, etc.),
and edge computing. He has over 600 publications in the prestige inter-
national journals/conferences and research books, and book chapters.
He has received the best product awards from the International Science
& Tech. Expo (Shenzhen) in 2011/2012 and the 1st Prize of Scientific
Research Awards from the Ministry of Education of China in 2017 (list
2). He has served as area editor for various prestige international jour-
nals, chair and PC member/skeynote speaker for many top international
conferences. He is the Fellow of IEEE and the Distinguished Member
of CCF.

	LR2Scheduler: layer-aware, resource-balanced, and request-adaptive container scheduling for edge computing
	Abstract
	1 Introduction
	2 Related work
	2.1 Resource allocation in edge computing
	2.2 Layer-aware container scheduling

	3 System model and problem formulation
	3.1 System model
	3.2 Modeling of cost and score
	3.3 Layer-aware and request-aware problem

	4 Proposed design of Scheduler
	4.1 Scheduler
	4.2 Scalability of Scheduler

	5 System implementation
	6 Experiments
	6.1 Experimental settings
	6.2 Experimental results

	7 Conclusion
	References

