
328 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Online Layer-Aware Joint Request Scheduling,
Container Placement, and Resource

Provision in Edge Computing
Zhenzheng Li , Jiong Lou , Member, IEEE, Zhiqing Tang , Member, IEEE, Jianxiong Guo , Member, IEEE,

Tian Wang , Senior Member, IEEE, Weijia Jia , Fellow, IEEE, and Wei Zhao , Fellow, IEEE

Abstract—Containers have emerged as a pivotal tool for service
deployment in edge computing. Before running the container, an
image composed of several layers must exist locally. Recent strate-
gies have utilized layer-sharing in images to reduce deployment
delays. However, existing research only focuses on a single aspect
of container orchestration, like container placement, neglecting the
joint optimization of the entire orchestration process. To fill in such
gaps, this article introduces an online strategy that considers layer-
aware container orchestration, encompassing request scheduling,
container placement, and resource provision. The goal is to reduce
costs, adapt to evolving user demands, and adhere to system con-
straints. We present an online optimization problem that accounts
for various real-world factors in orchestration, including container
and server expenses. An online algorithm is proposed, integrating
a regularization-based approach and stepwise rounding to address
this optimization problem efficiently. The regularization approach
separates time-dependent container placement and server wake-up
costs, requiring only current information and past decisions. The
stepwise rounding process generates feasible solutions that meet
system constraints, reducing computational costs. Additionally, a

Received 7 May 2024; revised 8 November 2024; accepted 15 November
2024. Date of publication 21 November 2024; date of current version 6 Febru-
ary 2025. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 62272050 and Grant 62302048,
in part by the Guangdong Key Lab of AI and Multi-modal Data Processing,
United International College (UIC), Zhuhai under 2023-2024 Grants funded
by the Guangdong Provincial Department of Education, in part by the Institute
of Artificial Intelligence and Future Networks (BNU-Zhuhai) and Engineering
Center of AI and Future Education, Guangdong Provincial Department of Sci-
ence and Technology, China, in part by Zhuhai Science-Tech Innovation Bureau
under Grant 2320004002772, and in part by the Interdisciplinary Intelligence
Super Computer Center of Beijing Normal University at Zhuhai. (Corresponding
authors: Zhiqing Tang and Weijia Jia.)

Zhenzheng Li is with the School of Artificial Intelligence, Beijing Normal
University, Beijing 100875, China, and also with the Institute of Artificial
Intelligence and Future Networks, Beijing Normal University, Zhuhai 519087,
China (e-mail: zhenzhengli@mail.bnu.edu.cn).

Jiong Lou is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
lj1994@sjtu.edu.cn).

Zhiqing Tang and Tian Wang are with the Institute of Artificial Intelligence and
Future Networks, Beijing Normal University, Zhuhai 519087, China (e-mail:
zhiqingtang@bnu.edu.cn; tianwang@bnu.edu.cn).

Jianxiong Guo and Weijia Jia are with the Institute of Artificial Intelligence
and Future Networks, Beijing Normal University, Zhuhai 519087, China, and
also with the Guangdong Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China (e-mail:
jianxiongguo@bnu.edu.cn; jiawj@bnu.edu.cn).

Wei Zhao is with the Shenzhen University of Advanced Technology, Shenzhen
518055, China (e-mail: zhao.wei@siat.ac.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2024.3504237, provided by the authors.

Digital Object Identifier 10.1109/TSC.2024.3504237

competitive ratio proof is provided for the proposed algorithm. Ex-
tensive evaluations demonstrate that our approach achieves about
20% performance enhancement compared to baseline algorithms.

Index Terms—Container placement, request scheduling, re-
source provision, edge computing.

I. INTRODUCTION

EDGE computing leverages various clusters deployed at the
edge of the network [1], thereby significantly enhancing

the capabilities of the core network to support data-intensive and
delay-sensitive applications [2], [3]. To enable efficient service
deployment at the edge, container technology has emerged as a
solution for hosting services [4], [5], [6], [7]. A container-based
service bundles all essential components into its container im-
age, which comprises layers representing changes to the file
system, including additions, deletions, and modifications [8].
Upon receiving a user request, it is scheduled to the edge cluster,
where the container is placed, and the necessary resources
are provisioned to run the container. If the edge cluster lacks
the locally stored layers of the container image, they must
be downloaded from a remote cloud-based registry [9], [10].
Hence, to deliver services to users through containers, container
orchestration is essential, involving the following three main
steps: 1) Scheduling user requests, 2) Placing containers in edge
clusters, and 3) Provisioning resources in edge clusters.

Most existing research on container orchestration primar-
ily focuses on container placement. By taking into account
the presence of images during container placement, various
objectives can be accomplished, such as enhancing resource
utilization [11], [12], [13], reducing service expenses [14], [15],
[16], and speeding up startup [17]. Furthermore, exploring the
layer-sharing nature of containers can further reduce costs [18].
Since multiple container images can share common base layers,
it is possible to place several containers on the same edge
cluster, allowing them to share common base layers and thereby
accelerate deployment. Numerous existing studies address layer
sharing aspects when downloading or placing container im-
ages [10], [19], [20]. Additionally, specific algorithms have
been introduced to curtail system service deployment delay,
storage usage, and request distribution expenses [21], [22],
[23]. However, none of the existing research comprehensively
encompasses the entire container orchestration process. In fact,

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-7661-1922
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-0994-3297
https://orcid.org/0000-0003-4819-621X
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0002-6268-2559
mailto:zhenzhengli@mail.bnu.edu.cn
mailto:lj1994@sjtu.edu.cn
mailto:zhiqingtang@bnu.edu.cn
mailto:tianwang@bnu.edu.cn
mailto:jianxiongguo@bnu.edu.cn
mailto:jiawj@bnu.edu.cn
mailto:zhao.wei@siat.ac.cn
https://doi.org/10.1109/TSC.2024.3504237

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 329

the scheduling of user requests impacts container placement,
which in turn influences resource provisions. These three steps
are intricately interconnected. Therefore, optimizing the entire
container orchestration process while considering layer sharing
remains a critical issue that requires a solution.

To optimize the costs of orchestration, we consider a layer-
aware joint request scheduling, container placement, and re-
source provision problem. However, several challenges must be
addressed. The first challenge is how to consider and integrate
different costs in container orchestration. Scheduling at the layer
granularity involves complex considerations due to the diver-
sity of edge clusters, such as varying energy efficiency ratios,
communication delays, and cluster states. Existing studies [10],
[22], [23] focus on layer-based container placement but overlook
real-world cost factors, potentially increasing system costs. Par-
ticularly, with layer sharing, containers sharing common layers
are placed on a specific edge cluster, leading to a surge in
requests to that cluster. This surge forces the cluster to activate
servers for additional resources, causing significant wake-up
delays [24]. Moreover, it may also result in scheduling requests
to remote or low-efficiency edge clusters, leading to increased
communication latency or higher energy consumption. There-
fore, the system must trade off multiple costs, including resource
provision and request scheduling, to jointly minimize overall
costs when making layer-aware container placement decisions.

The second challenge is how to make online joint decisions
while considering layer sharing and synthesis costs. In con-
trast to offline scenarios, where complete information such as
future user requests is available, online scenarios necessitate
decision-making based on dynamic and incomplete informa-
tion [25]. This implies that online algorithms cannot wait for
all the information to be known before making the decisions.
Instead, decisions must be made incrementally as the problem
unfolds, often leading to increased complexity of the problem.
While some previous research relies on offline strategies for
container placement based on prior knowledge of future user
request patterns [21], [26], these methods do not account for the
dynamic characteristics of online edge environments, such as
user mobility and changing requirements [27]. Therefore, there
is a critical necessity to develop online scheduling mechanisms
that rely solely on current information.

In this paper, we explore the layer-aware joint decision-
making problem focusing on overall costs for container or-
chestration in edge computing. Specifically, we formulate a
Layer-aware Joint Request scheduling, Container placement,
and Resource provision (LJRCR) problem, which aims to
minimize the overall cost associated with request scheduling,
container placement, storage, server energy, and wake-up. In
LJRCR, container placement and resource provision are dy-
namic processes that require continuous adjustment, leading to
time-dependent costs for both container placement and server
wake-up. These time-dependent costs, where past decisions
affect current choices and subsequently future outcomes, make
solving LJRCR highly complex. The joint nature of LJRCR
necessitates consideration of multiple interdependent objectives
and precedence constraints. This interdependency complicates
the process of finding an effective solution. Moreover, LJRCR

is NP-Hard, which makes it challenging to solve even in offline
scenarios.

To solve the LJRCR, we propose an Online Regularization and
Rounding (ORR) algorithm. We utilize a regularization-based
method to break down the time-dependent container placement
and server wake-up costs, creating a series of time-independent
convex subproblems. This decomposition allows us to calculate
fractional solutions for jointly optimizing multiple interdepen-
dent decisions, utilizing only current information and past deci-
sions. Subsequently, we develop a stepwise rounding process
that, in conjunction with the regularization-based approach,
refines the fractional solutions for each decision type in ac-
cordance with interdependent precedence constraints. For every
decision type, ORR incrementally adjusts a pair of fractional
solutions up and down in a compensatory manner. Our method
involves a single rounding operation to meet all constraints, thus
eliminating the need for repeated rounding attempts and reduc-
ing computational burdens. Additionally, we rigorously prove
the competitive ratio of the ORR through theoretical analysis.
Finally, we conduct a comprehensive evaluation of the ORR,
considering various experimental setups and authentic data. The
ORR demonstrates an approximate performance enhancement
of 20% compared to baseline algorithms. The main contributions
of this paper can be summarized as follows:

1) We formulate the LJRCR problem, which utilizes layer-
sharing and addresses costs associated with request
scheduling, container placement, and resource provision.

2) We present the ORR algorithm for the LJRCR, which de-
composes the time-dependent costs into time-independent
convex subproblems and employs a stepwise rounding
process to derive feasible solutions.

3) We rigorously prove the competitive ratio of the ORR and
assess it through extensive experiments, demonstrating
a performance improvement of approximately 20% over
baseline algorithms.

The remainder of this paper is organized as follows. Section II
presents the related work. Section III introduces the system
model and formulation of the LJRCR. Section IV presents the
ORR. Section V analyzes and proves the competitive ratio of
the ORR. Section VI provides the performance evaluation, and
we conclude in Section VII.

II. RELATED WORK

A. Container Placement

Container placement in edge computing poses a significant
challenge due to the geographical dispersion and heterogeneity
of edge clusters [28]. Sami et al. [29] propose an intelligent fog
and service placement solution utilizing Deep Reinforcement
Learning (DRL) to make proactive container placement deci-
sions in advance of user requests, recognizing the necessity for
swift and proactive service updates. Wang et al. [30] combine
task scheduling with automatic scaling, presenting a delay-
aware algorithm for task scheduling, container placement, and
resource scaling. Zhang et al. [31] devise a joint task scheduling
and containerization scheme that accounts for applications with
interrelated tasks. Menouer et al. [32] introduce a multi-criteria

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

edge cluster selection for container placement, choosing the
best cluster for each new container submission through a policy
that balances multiple criteria related to user needs. However,
these methods treat container images as a whole, overlooking
the shared layers within them.

B. Layer-Aware Container Scheduling

Several studies show that leveraging the layer-sharing nature
of container images can improve service deployment perfor-
mance [33]. For example, Tang et al. [10] propose a layer-aware
container scheduling algorithm that considers complex depen-
dencies among layers and images, reducing overall task com-
pletion time. Lou et al. [20] introduce a layer-aware scheduling
algorithm that integrates layer-sharing while jointly optimizing
container allocation and layer download sequence to minimize
total startup delay. Liu et al. [34] explore an optimal microservice
placement strategy that balances layer and chain sharing to
reduce microservice image pulling delays and communication
costs. Given the complex inter-dependencies among multiple
users, Tang et al. [19] propose a container migration algorithm to
reduce overall migration cost. Gu et al. [26] explore the collabo-
rative deployment of microservices by merging intra-server and
inter-server layer-sharing to maximize edge throughput. How-
ever, most of these approaches either assume prior knowledge of
future user request patterns or neglect the overall costs involved
in layer-aware container orchestration decisions.

C. Joint Decision-Making

The joint optimization problem seeks to determine deci-
sion variables that simultaneously optimize multiple objectives
or system components. Joint decision-making methods have
demonstrated improved overall system performance in edge
computing [35], [36]. Zhang et al. [37] approach the task of-
floading, content caching, and resource allocation as a Mixed
Integer Non-Linear Programming (MINLP) problem to derive
an optimal set of policies. Tran et al. [38] investigate the joint task
offloading and resource allocation problem to maximize user
gains. Yu et al. [39] address an optimization problem encom-
passing Unmanned Aerial Vehicle (UAV) location, communi-
cation, computational resource allocation, and task partitioning
decisions. Furthermore, Khoramnejad et al. [40] focus on max-
imizing computed bits while minimizing energy consumption
in joint resource allocation and task offloading decisions. Nan
et al. [41] introduce optimization methods for task offloading
decisions of vehicles and the allocation of uplink bandwidth and
computing resources for a roadside device within its coverage
area.

However, these studies do not address the layer-aware online
joint decision-making problem, which considers the impact of
various interrelated factors. To our knowledge, our work is
the first to utilize layer-sharing to enhance container orches-
tration performance while fully accounting for system costs
related to request scheduling, container placement, and resource
provision.

TABLE I
MAIN NOTATIONS

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a generalized container orchestration scenario in
edge computing, as illustrated in Fig. 1. When a user sends a
request, the edge cluster can schedule the request to any cluster
(Request scheduling). Then, the cluster should download the
required layers from the registry on the remote cloud to construct
a complete image and start up the container that provides the
service [22] (Container placement). When the currently acti-
vated servers cannot handle incoming requests, the sleeping
servers are woken up to provide the necessary computing re-
sources [24] (Resource provision). In this section, we formulate
the layer-aware joint optimization problem, which aims to find
a set of decision variables that optimize multiple objectives
or system components concurrently. Specifically, this paper
leverages layer-sharing of multiple container images to jointly
minimize the system costs associated with request scheduling,
container placement, storage, server energy, and wake-up. The
main notations are summarized in Table I.

A. System Model

Edge clusters: Edge computing networks consist of a set
of geographically dispersed edge clusters, denoted as N =
{1, 2, . . . , |N |}. Each edge cluster comprises two main com-
ponents: the storage, responsible for storing data, and the
servers, responsible for processing user requests [42]. Let T =
{1, 2, . . . , |T |} denote the set of time slots, and the time slot
is assumed as a fixed interval of time. A container can only
service one request in a time slot. These edge clusters can
communicate with each other and work collaboratively. The
central controller makes control decisions during each time
slot. The edge clusters receive these control decisions, execute
the corresponding actions, and transmit the cluster’s state back
to the central controller for decision-making in the next time
slot.

Containers and images: A container image registry on the re-
mote cloud stores a set of container images I = {1, 2, . . . , |I|}.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 331

Fig. 1. Overview of container orchestration in edge computing, including request scheduling, container placement, and resource provision. Container images
can share multiple base layers, such as L1 and L3. Service deployment can be significantly accelerated by placing containers with shared layers within the same
cluster. This paper leverages layer-sharing of multiple container images to jointly minimize request scheduling, container placement, storage, server energy, and
wake-up costs.

Each container image i ∈ I consists of multiple layers. The
notation L = {1, 2, . . . , |L|} is used to denote the set of layers.
We use hli ∈ {0, 1} to indicates whether the container image
i contains layer l ∈ L (i.e., hli = 1) or not (i.e., hli = 0). To
deploy a container i on a cluster n ∈ N , the cluster n must
store all the layers required by the container image i. Otherwise,
it must download the absent layers from the container image
registry. Consequently, if two container images share a common
layer l, colocating both images within the same cluster enables
layer l to be downloaded only once, thereby reducing redundant
downloads and accelerating service deployment.

User requests: Let rin(t) ∈ N represent the number of user
requests i arriving at the cluster n during time slot t. Since the
user request i can be served by the corresponding container i in
the edge cluster, we use the notation i in a slightly abusive way.
The requests can be scheduled to any cluster n′. Let yinn′(t) ∈ N

represent the number of user requests i arriving at the clustern to
be scheduled to the cluster n′. We use xln(t) ∈ {0, 1} to indicate
whether the cluster n stores layer l (i.e., xln(t) = 1) or not (i.e.,
xln(t) = 0). Thus, the relationship between xln(t) and yinn′(t)
can be expressed as yinn′(t)hli ≤ xln′(t)rin(t). This inequality
indicates that the clustern′ has all the layers needed to deploy the
container image i and that the number of requests scheduled to
cluster n′ cannot exceed the number of requests received by the
source cluster n. Scheduling each user request to an edge cluster
is essential for stable service delivery. Therefore, it should hold
that rin(t) ≤

∑
n′∈N y

i
nn′(t).

The storage in the edge cluster serves to store all layers,
which the server within the cluster can access through the
internal high-speed local area network. Let zn(t) ∈ N

+ denote
the number of servers activated on the cluster n. Note that zn(t)
cannot exceed the maximum number of serversDn on the cluster
n. Furthermore, let Qn be the request processing capability
(i.e., the number of containers that can be run) related to the
computing capability for each server in the cluster n. Hence, the
product ofDn andQn represent the overall computing resources
at the cluster n, while the product of zn(t) and Qn indicates
the currently provisioned computing resources at the cluster n.

The cluster must ensure the provision of sufficient computing
resources to process incoming scheduled requests. Therefore,
the relationship between yinn′(t) and zn(t) can be expressed as∑

n∈N
∑

i∈I y
i
nn′(t) ≤ Qn′zn′(t).

B. System Cost

The total system cost involved in container orchestration con-
sists of the following components. The cost of request schedul-
ing during request scheduling; the cost of container placement
and storage during container placement; and the cost of server
energy and wake-up during resource provision.

Request scheduling cost: It is proportional to the service delay
of the request scheduling. Let Hnn′ represent the communica-
tion delay [43] between clusters n and n′, Hnr represent the
communication delay between clustern and the container image
registry, and bi indicate the data size of user request i, andBn be
the bandwidth of the cluster n. Then, the total request schedul-
ing cost is defined as

∑
t∈T
∑

n′∈N
∑

n∈N
∑

i∈I c
i
nn′yinn′(t).

Here, cinn′ represents the weighted request scheduling cost fac-
tor, which quantifies the communication cost associated with
scheduling request i from cluster n to cluster n′. Specifically,
cinn′ =W2(Hnn′ + bi

Bn
), where W2 is the weight.

Container placement cost: It is proportional to the deployment
delay for placing containers. An edge cluster must download
the required layers from the image registry to create a complete
container image, incurring additional initialization delay. The
delay for the clustern to download layer l from the image registry
is Hnr +

pl

Bn
. The total container placement cost is then ob-

tained by
∑

t∈T
∑

n∈N
∑

l∈L d
l
n[x

l
n(t)− xln(t− 1)]+, where

[x]+ = max{x, 0}. dln represents the weighted container place-
ment cost factor, which quantifies the delay cost associated with
downloading the missing layer l to the cluster n. Specifically,
dln =W3(Hnr +

pl

Bn
), where W2 is the weight. Our container

placement cost model differs from prior research on layer-aware
container placement [21], [22] by explicitly considering the
dynamics of online scenarios. Since the decision at the current
time t is influenced by the prior decision xln(t− 1), and the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

332 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

decisions made at t will impact future decisions, the container
placement cost exhibits time-dependent characteristics.

Storage cost: It is the storage consumption of the stored layers
during container placement. Let pl represent the storage space
occupied by layer l. Then, the total storage cost is obtained
by
∑

t∈T
∑

n∈N
∑

l∈L c
l
nx

l
n(t). Here, cln indicates the weighted

storage cost factor, calculated as cln =W1pl, where W1 is the
weight.

Server energy cost: Sustaining active status for servers within
edge clusters results in energy consumption. Let cn represent
the weighted server energy cost factor for the cluster n. Then,
the total server energy cost is given by

∑
t∈T
∑

n∈N cnzn(t).
Server wake-up cost: It is proportional to the additional delay

incurred when waking up a sleeping server. The sleeping servers
will be woken up when the currently provisioned computing
resources are inadequate. Let dn represent the weighted server
wake-up cost factor, which qualifies the wake-up delay. The total
server wake-up cost is calculated as

∑
t∈T
∑

n∈N dn[zn(t)−
zn(t− 1)]+. Similar to the container placement cost, the server
wake-up cost also demonstrates time-dependent characteristics.

Three of these costs (request scheduling, storage, and server
energy costs) are linear and associated with each independent
time slot. The remaining two costs are switching costs, which
include container placement and server wake-up costs for each
pair of consecutive time slots.

C. Problem Formulation

We formulate a layer-aware joint request scheduling, con-
tainer placement, and resource provision problem P, aiming to
minimize the system costs of five components over time while
satisfying the time-varying user requests and respecting various
system constraints. The problem P is as follows:

P:
∑
t∈T

∑
n∈N

∑
l∈L

clnx
l
n(t) +

∑
t∈T

∑
n∈N

cnzn(t)

+
∑
t∈T

∑
n′∈N

∑
n∈N

∑
i∈I

cinn′yinn′(t)

+
∑
t∈T

∑
n∈N

∑
l∈L

dln
[
xln(t)− xln(t− 1)

]+
+
∑
t∈T

∑
n∈N

dn [zn(t)− zn(t− 1)]+ (1)

s.t. yinn′(t)hli ≤ xln′(t)rin(t), ∀l, ∀i, ∀n, ∀n′, ∀t (1a)

rin(t) ≤
∑
n′∈N

yinn′(t), ∀i, ∀n, ∀t (1b)

∑
n∈N

∑
i∈I

yinn′(t) ≤ Qn′zn′(t), ∀n′, ∀t (1c)

xln(t) ∈ {0, 1} , ∀l, ∀i, ∀n, ∀t (1d)

yinn′(t) ∈ {0, 1, . . .} , ∀i, ∀n, ∀n′, ∀t (1e)

zn(t) ∈ {1, 2, . . . , Dn} , ∀n, ∀t (1f)

where ∀l, ∀i, ∀n, ∀n′, ∀t represents ∀l ∈ L, ∀i ∈ I, ∀n ∈ N ,
∀n′ ∈ N , ∀t ∈ T , respectively. Constraint (1a) ensures that the

cluster n′ has all the layers required for deploying container
image i and the number of requests scheduled to the cluster n′

cannot exceed the number of requests received by the source
cluster n. Constraint (1b) guarantees that each user request is
scheduled to an edge cluster. Constraint (1c) ensures that the
cluster provisions enough computing resources to handle the
scheduled requests.

IV. ONLINE ALGORITHM DESIGN

In this section, we derive the decision by solving the problem
P. However, optimizing P is non-trivial due to the following
primary challenges. First, even in the offline case where rin(t), ∀t
is known at the time of decision-making, if we simplify the
problem P by overlooking the switching costs, our problem
is an advanced covering problem [44], a class recognized for
its NP-Hardness and can only be solved heuristically. In the
online scenario, decision-making at time t relies solely on the
current information rin(t) and previous decisions xln(t− 1)
and zn(t− 1), which further increases the complexity of the
problem. Second, the algorithm design is further complicated by
the interdependent precedence constraints and time-dependence
arising from the container placement and server wake-up costs.
These challenges pose difficulties in leveraging the existing
information for long-term cost optimization and constraints
satisfy.

Conventional randomized rounding approaches hinge on the
relaxation of programming problems and leverage convex opti-
mization techniques to attain fractional solutions [45]. Typically,
these approaches are limited in their applicability to individual
time slots, rendering them incapable of simultaneously address-
ing the time-dependent switching costs for long-term cost opti-
mization in this context. Moreover, the conventional randomized
rounding approach demands repeated rounding tries to guarantee
the satisfaction of all interdependent precedence constraints, a
process characterized by considerable time consumption. To
address this challenge, we aim to develop an efficient online
algorithm capable of achieving both provable theoretical per-
formance and polynomial time complexity. We summarize the
proposed ORR in Algorithm 1 and provide a roadmap for the
ORR in Fig. 2. As shown in the blue part of Fig. 2, we relax,
regularize, and decompose the problem P to obtain the convex
subproblem Pt

2. Thus, Pt
2 are time-independent, and we can

solve Pt
2 by invoking Online Regularization-based Approach

(ORA) based on current information and previous decisions.
In the orange part of Fig. 2, a stepwise rounding process is
designed to obtain the feasible integral solutions. The stepwise
rounding process entails a single rounding process to satisfy
all constraints. We prove that the ORR satisfies all constraints,
thereby resolving the issue of necessitating repeated rounding
tries. Next, we will detail the algorithm design.

A. Online Regularization-Based Approach

Before introducing the specific algorithm, it is instructive to
examine the structure of the problem P. The objective func-
tion (1) comprises three linear terms and two switching terms,
exhibiting evident non-convex characteristics. Additionally, the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 333

Fig. 2. A roadmap of the ORR (blue and orange) and performance analysis (black).

constraints encompass three linear precedence constraints (1a)–
(1c), along with integral constraints (1d)–(1f). We should trans-
form the switching term into a convex function and relax the
integral variable, and then we can formulate a convex optimiza-
tion problem to obtain fractional solutions.

According to this idea, we first obtain the relaxed problem
P1 by relaxing the integral variables x(t),y(t), z(t), ∀t of the
problem P. The remaining challenge in solving the relaxed
problem P1 is converting the switching costs, i.e., container
placement and server wake-up costs. To this end, we employ the
relative entropy function [46] to replace the container placement
and server wake-up costs in our relaxed problem P1, obtaining
a regularized problem P2. The relative entropy function, a
proven convex function, has been widely used to approximate
the L1-distance term. We express regularized problem as the
sum of subproblems, P2 =

∑
t∈T Pt

2, illustrated as follows:

Pt
2 =

∑
n′∈N

∑
n∈N

∑
i∈I

cinn′yinn′(t)

+
∑
n∈N

∑
l∈L

clnx
l
n(t) +

∑
n∈N

cnzn(t)

+
∑
n∈N

∑
l∈L

dln
ηx

((
xln(t) + ε

)
ln

xln(t) + ε

xln(t− 1) + ε
− xln(t)

)

+
∑
n∈N

dn
ηz

(
(zn(t) + ε′) ln

zn(t) + ε′

zn(t− 1) + ε′
− zn(t)

)
(2)

s.t. (1a) - (1c)

xln(t) ∈ [0, 1] , ∀l, ∀n (2a)

yinn′(t) ≥ 0, ∀i, ∀n, ∀n′ (2b)

zn(t) ∈ [1, Dn] , ∀n (2c)

where ηx = ln(1 + 1
ε) and ηz = ln(1 + 1

ε′). To prevent the oc-
currence of exception values, we add small positive constants ε
and ε′ to both the denominator and numerator of the fraction in
the relative entropy function. Moreover, we multiply the relative

entropy function by ηx and ηz to normalize the regularized
container placement and server wake-up costs, respectively.

Since the objective function (2) is convex and all constraints
are linear, the subproblem Pt

2 is a convex problem for each
time slot t. Moreover, the subproblem Pt

2 requires only the
current information rin(t) and previous decisions xln(t− 1) and
zn(t− 1) as input parameters in time slot t. Consequently,
the subproblem Pt

2 can be efficiently solved by the standard
convex optimization algorithms (e.g., interior point method [47])
within polynomial time complexity. This implies that fractional
solution x̃(t), ỹ(t), z̃(t) can be derived by addressing problem
Pt

2 individually for each time slot, so the regularized problem
P2 can be solved as a series of time-independent convex sub-
problems Pt

2 to obtain the optimal solution. Formally, as in line
4 of the ORR, we invoke the subroutine ORA to obtain the frac-
tional solutions x̃(t), ỹ(t), z̃(t). ORA generates the fractional
solutions by the interior point method within each time slot.

B. Rounding Process

Given the integral constraints (1d)–(1f) inherent in the prob-
lem P, it is essential to note that the fractional solutions
x̃(t), ỹ(t), z̃(t) does not satisfy to these constraints. Hence, it is
necessary to round the fractional solutions to the feasible integral
solutions x(t),y(t),z(t). Conventional randomized rounding
approaches [45], commonly employed for converting fractional
solutions into integral counterparts, encounter particular chal-
lenges when applied to our specific problem. It is not assured
that these approaches can reliably meet the conditions specified
by constraints (1b) and (1c). Therefore, repeated rounding tries
are mandated for the traditional randomized rounding algorithm
to satisfy both constraints. This iterative process introduces a
considerable computational overhead.

A more formidable challenge arises in the precedence con-
straint (1a). When utilizing the conventional randomized round-
ing approaches, there is a possibility that particular layers asso-
ciated with a specific container image may be rounded up while
others are simultaneously rounded down. This situation could

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

334 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Algorithm 1: ORR.

Input: N , I,L,h,D,Q, c,d, ε, ε′

Output: Integral solutions x(t),y(t),z(t), ∀t
1: Initialize x = 0,y = 0, z = 0
2: for t ∈ T do
3: Get user requests r(t)
4: Invoke ORA to obtain the fractional solutions x̃(t),

ỹ(t) and z̃(t)
5: Integral solutions z(t) = WPR(z̃(t),Q)
6: Substitute coefficients cln and dln of objective

function (2) with clnQn and dlnQn, respectively, fix
z(t) and invoke ORA to obtain the fractional
solutions x̃∗(t), ỹ∗(t)

7: Integral solutions y(t) = PR(ỹ∗(t))
8: Fix y(t) and z(t), replace constraint (1a) with

u(0 < yinn′(t)hli) ≤ xln′(t), and invoke ORA to
obtain the fractional solutions x̃∗∗(t)

9: Integral solutions x(t) = WPR(x̃∗∗(t), c)
10: return x(t),y(t),z(t)

Subroutine ORA: Online Regularization-Based Approach.
Input:
N , I,L,h,D,Q, c,d, ε, ε′, t,x(t− 1), z(t− 1), r(t)

Output: x̃(t), ỹ(t), z̃(t)
1: Invoke the interior point method to solve Pt

2:
min:

∑
n′∈N

∑
n∈N

∑
i∈I c

i
nn′yinn′(t)

+
∑

n∈N
∑

l∈L c
l
nx

l
n(t) +

∑
n∈N cnzn(t)

+
∑

n∈N
∑

l∈L
dl
n

ηx
((xln(t) + ε) ln xl

n(t)+ε
xl
n(t−1)+ε

− xln(t))

+
∑

n∈N
dn

ηz
((zn(t) + ε′) ln zn(t)+ε′

zn(t−1)+ε′ − zn(t))
s.t. (1a) – (1a), (2a) – (2c)

2: return x̃(t), ỹ(t), z̃(t)

potentially lead to the catastrophic outcome of failing to acquire
the essential layers required to construct a complete container
image. Motivated by the abovementioned challenges, we design
a stepwise rounding process, as illustrated in lines 5 to 9 of the
ORR. Subsequently, we will progressively expound the details
of the stepwise rounding process.

1) Rounding z̃(t): If we choose to round the variables other
than z̃(t) first, there is a potential risk of not consistently
achieving a feasible z(t), primarily due to the constraints (1c)
and (1f). Based on the above reason, we first round z̃(t) to obtain
the integral solutions z(t) as depicted in line 5 of the ORR.
Conservative rounding policies, which round up all decision
variables, can lead to high costs. On the other hand, radical
rounding strategies, which round down all decision variables,
can result in the system being unable to ensure sufficient re-
sources to process tasks. To address this issue, we develop the
subroutine Weighted Pairwise Rounding (WPR), inspired by the
dependent rounding technique [48], at every time slot to convert
the fractional solutions z̃(t) to the integral solutions z(t).

The main idea of the WPR involves selecting two float so-
lutions and conducting rounding in a complementary manner.
In WPR, a weight is assigned to the rounding according to the

Subroutine WPR: Weighted Pairwise Rounding.

Input:ũ(t),W
Output:u(t)
1: If input is z̃(t), set J = ∅,K = N ,W = Q
2: If input is x̃(t), set J = N ,K = L,W = c
3: for j ∈ J do
4: Initialize K̃ = K
5: for k ∈ K do
6: μk

j = ũkj (t)− 	ũkj (t)

7: K̃ = K̃ − {k|μk

j ∈ {0, 1}}
8: while |K̃| > 1 do
9: Randomly select k1, k2 ∈ K̃, wherek1 �= k2

10: ω1 = min{1− μk1
j ,

W
k2
j

W
k1
j

μk2
j }

11: ω2 = min{μk1
j ,

W
k2
j

W
k1
j

(1− μk2
j)}

12: With the probability ω2

ω1+ω2
set

μk1
j = μk1

j + ω1, μ
k2
j = μk2

j − W
k1
j

W
k2
j

ω1

13: With the probability ω1

ω1+ω2
set

μk1
j = μk1

j − ω2, μ
k2
j = μk2

j +
W

k1
j

W
k2
j

ω2

14: if μk1
j ∈ {0, 1} then

15: Set uk1
j (t) = 	ũk1

j (t)
+ μk1
j , K̃ = K̃ − {k1}

16: if μk2
j ∈ {0, 1} then

17: Set uk2
j (t) = 	ũk2

j (t)
+ μk2
j , K̃ = K̃ − {k2}

18: if |K̃| = 1 then
19: For the only one element k ∈ K̃ set
ukj (t) = �ũkj (t), K̃ = K̃ − {k}

20: return u(t)

request processing capacityQn of the cluster n, as shown in line
1. In lines 4 to 7, we find the set of float solutions in z̃(t). As long
as the number of elements in the set K̃ is more than one, WPR
randomly selects two elements from the set K̃. In lines 10 to 11, it
sets the rounding factor as the product of the probability and the
rounding weight. The probability values of these two elements
are subsequently updated randomly in lines 12 to 13. As shown
in lines 14 to 17, if the probability becomes 0 (or 1), it will be
rounded down (or rounded up). During the update process, one
element undergoes an increase while the other decreases. The
complementary strategy can minimize the gap from the original
cost. It is important to note that in each round of iteration, the
elements of the set K̃ are reduced by at least one. In lines 18
to 19, if K̃ has only one element, WPR directly rounds it up to
ensure sufficient computing resources for processing incoming
requests.

2) Rounding ỹ(t) and x̃(t): Upon the rounding of z̃(t), it is
possible that some of the rounded values may undergo a round
down, resulting in certain clusters being unable to accommodate
the scheduled requests ỹ(t). This outcome could lead to the
fractional solutions x̃(t), ỹ(t) becoming infeasible. To this end,
we fix the integral solutionsz(t) and re-invoke the ORA to obtain

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 335

Subroutine PR: Pairwise Rounding.

Input: ỹ(t)
Output: y(t)
1: for n ∈ N do
2: Construct a bipartite graph G = (Vn′ , Vi, E)
3: For (Vn′ , Vi) ∈ E, its value is ỹinn′(t)
4: repeat
5: Construct subgraph (Vn′ , Vi, F) by taking the float

edges of (Vn′ , Vi, E)
6: Search a simple cycle or maximal path in the

subgraph (Vn′ , Vi, F) via Depth-First-Search
7: Divide cycle/path into two matching M1,M2

respectively
8: Set λi

nn′ = ỹinn′(t)− 	ỹinn′(t)

9: Set ω1 = min{γ : (∃(n′, i) ∈M1 : λi

nn′ + γ = 1)∨
(∃(n′, i) ∈M2 : λi

nn′ − γ = 0)}
10: Set ω2 = min{γ : (∃(n′, i) ∈M1 : λi

nn′ − γ = 0)∨
(∃(n′, i) ∈M2 : λi

nn′ + γ = 1)}
11: With the probability ω2

ω1+ω2
set

ỹinn′(t) = ỹinn′(t) + ω1, ∀(n′, i) ∈M1

ỹinn′(t) = ỹinn′(t)− ω1, ∀(n′, i) ∈M2

12: With the probability ω1

ω1+ω2
set

ỹinn′(t) = ỹinn′(t)− ω2, ∀(n′, i) ∈M1

ỹinn′(t) = ỹinn′(t) + ω2, ∀(n′, i) ∈M2

13: until F = ∅
14: return y(t)

the feasible fractional solutions. Before proceeding further, it
has come to our attention that the value of real xln′(t) cannot be
tightly bounded by (1a) as the value of real yinn′(t) approaches 0.
This scenario may increase the overall cost, as it underestimates
the storage and container placement costs associated with xln′(t)
on a specific cluster where sporadic requests are scheduled to
that cluster. To alleviate this issue, within the objective function
(2), we substitute coefficients cln and dln with clnQn and dlnQn,
respectively, as demonstrated in the line 6 of the ORR. By
employing this trick, we can alleviate the underestimation of
storage and container placement costs compared to the request
scheduling costs, thus mitigating this phenomenon. Following
the re-invocation of ORA to obtain fractional ỹ∗(t), the integral
solutions y(t) are based on ỹ∗(t), as shown in the line 7 of the
ORR.

Rounding ỹ∗(t) down directly may cause some requests to fail
(i.e., violate constraint (1b)), while rounding ỹ∗(t) up directly
may lead to insufficient computing resources on specific edge
clusters (i.e., violate constraint (1c)). To this end, we develop
the subroutine Pairwise Rounding (PR) subroutine, inspired by
the dependent rounding technique [48], which involves selecting
two float solutions and conducting rounding in a complementary
manner. PR constructs the bipartite graph G and extracts a
subgraph F with float values for the edges of G. For ∀n, the
nodes of the bipartite graph G represent the user requests and
the edge clusters, respectively. The edge between two nodes
represents the assigned value of the request scheduling. In lines
6 to 7, the Depth-First-Search is used to find a simple cycle

or maximal path in F . It then divides the cycle or path into two
matchings,M1 andM2. In Iines 9 to 10, we identify the smallest
Euclidean distance between rounds up or down in the matchings.
Moreover, the values of the float edges in the matchings are
randomly updated in lines 11 to 12. Note that an increase in the
float edge within the matching M1 corresponds to an increase
in the assigned value for request scheduling, accompanied by a
corresponding reduction in the float edge within the matching
M2. This approach ensures that constraints are satisfied while
preventing a significant cost increase. The inner loop is iterated
until the subgraph F becomes empty.

Similar to obtaining y(t), a three-step procedure is employed
to obtain the integral solutions x(t). First, after rounding z̃(t)
and ỹ∗(t), y(t) and z(t) are fixed in the line 8 of the ORR. To
ensure the correct deployment of all layers necessary for con-
structing a complete container image, we substitute constraint
(1a) with the following expression: u(0 < yinn′(t)hli) ≤ xln′(t),
where the step function u(x) is defined as 1 for x > 0 and 0
otherwise. This constraint guarantees properly downloading all
necessary layers to the corresponding edge clusters. Since y(t)
is a fixed constant, the behavior of the replacing constraint does
not affect the linear nature of the constraint, thus addresses the
challenges posed by constraint (1a). Subsequently, we invoke
ORA again to obtain the fractional solutions x̃∗∗(t). Finally,
WPR is invoked to round x̃∗∗(t) to obtain the integral solutions
x(t), as shown in the line 9 of the ORR.

V. THEORETICAL PERFORMANCE ANALYSIS

In this section, we evaluate the feasibility of the final integral
solutions x(t),y(t),z(t) and the time complexity of the ORR
algorithm. We also present a rigorous proof of the theoretical
performance of the ORR regarding its competitive ratio. The
competitive ratio R evaluates the worst-case performance of
the ORR compared to the optimal offline solution, as expressed
by E[P(x(t),y(t),z(t)|∀t)] ≤ RP∗, where E[P(·)] represents
the expected objective value of problem P at the evaluation
point, and P∗ denotes the optimal objective value of the offline
solution.

For ease of reading, we provide a roadmap for the performance
analysis as the black part of Fig. 2. First, we introduce the
concept of the equivalent relaxation auxiliary problem P′

1 and
its corresponding dual problem, serving as the critical bridge
connecting the problem P with the regularized problem P2. We
establish a mapping to generate a feasible solution for the dual
problem. Following this, we employ the Karush-Kuhn-Tucker
(KKT) conditions [49] as a pivotal analytical tool to scrutinize
the gap between the fractional solutions and the dual objective
value, leading to the determination of the fractional gap R1.
Subsequently, we leverage the relationship between z̃(t) and
z(t) to forge a link between their respective server energy costs.
We employ this connection as a pivotal conduit to bind the
objective’s remaining costs achieved by the integral solutions,
leading to the determination of the rounding gap R2. These
analyses allow us to establish the competitive ratio of the ORR,
denoted as R = R1R2. Next, we will expound upon the details
of our proof.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

336 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

A. Feasibility Analysis and Complexity Analysis

Theorem 1: The integral solutions x(t),y(t),z(t) are feasi-
ble for the problem P.

The detailed proof is given in Appendix A, available online.
The derivation of Theorem 1 signifies that the ORR satisfies

all constraints, thereby resolving the issue of necessitating re-
peated rounding tries, as observed in conventional randomized
algorithms, to produce the feasible solutions.

Theorem 2: The ORR has polynomial time complexity.
The detailed proof is given in Appendix B, available online.

B. Equivalence Problem and Dual Problem

To facilitate our analysis, we first introduce an equivalent
auxiliary problem P′

1 for the relaxation problem P1 as follows:

P′
1:
∑
t∈T

∑
n∈N

∑
l∈L

clnx
l
n(t) +

∑
t∈T

∑
n∈N

cnzn(t)

+
∑
t∈T

∑
n′∈N

∑
n∈N

∑
i∈I

cinn′yinn′(t)

+
∑
t∈T

∑
n∈N

∑
l∈L

dlnu
l
n(t) +

∑
t∈T

∑
n∈N

dnvn(t) (3)

s.t. (1a) - (1c)(∑
n∈N

∑
i∈I

rin(t)−Qn′Dn′

)+

≤
∑

n∈N\{n′}
Qnzn(t)

∀n′ ∈ N ′, ∀t (3a)

uln(t) ≥ xln(t)− xln(t− 1), ∀l, ∀n, ∀t (3b)

vn(t) ≥ zn(t)− zn(t− 1), ∀n, ∀t (3c)

zn(t) ≥ 1, ∀n, ∀t (3d)

yinn′(t), xln(t), u
l
n(t), vn(t) ≥ 0, ∀l, ∀i, ∀n, ∀n′, ∀t (3e)

where the auxiliary variables uln(t) and vn(t) (associated con-
straint (3b), (3c) and (3e)) are equivalent to the container place-
ment and server wake-up costs. Regarding the boxing constraint
of xln(t), we note that there is no benefit in allowing xln(t) to
be greater than 1. Specifically, due to the presence of constraint
(1b) and the monotonicity of the objective function for yinn′(t),
yinn′(t)will not be greater than rin(t). Similarly, due to constraint
(1a) and monotonicity of the objective function for xln(t), we
have xln(t) will not be greater than 1. Consequently, we can
directly remove the boxing constraint of xln(t), as well as the
boxing constraint of uln(t). For the boxing constraint of zn(t),
we replace it with a set of knapsack cover constraints1 [50] (i.e.,
constraint (3a)). Since the right-hand side of the inequality for
constraint (3a) is non-negative, it is redundant when the left-hand
side of the inequality is negative, that is, N′ = {n′|n′ ∈ N ∩∑

n∈N
∑

i∈I r
i
n(t) > Qn′Dn′ }. Note that distinguish between

1This transformation results in the introduction of several constraints that are
similar to those in constraint (3a). To handle all these constraints, one can add
new dual variables and KKT conditions, similar to the analytic technique that
we have used.

(x)+ and [x]+, (x)+ indicates a non-negative value. After that,
we can remove the boxing constraint of vn(t).

We derive the dual problem D1 of the relaxation problem P1

through the Lagrangian of equivalent auxiliary problem P′
1 as

follow:

D1:
∑
t∈T

∑
n∈N

∑
i∈I

θin(t)r
i
n(t) +

∑
t∈T

∑
n∈N

ρn(t)

+
∑
t∈T

∑
n′∈N ′

βn′(t)

(∑
n∈N

∑
i∈I

rin(t)−Qn′Dn′

)+

(4)

s.t. cln −
∑
n′∈N

∑
i∈I

αil
n′n(t)r

i
n′(t) + ψl

n(t)− ψl
n(t+ 1) ≥ 0,

∀l, ∀n,∀t (4a)

cinn′ +
∑
l∈L

αil
nn′(t)hli − θin(t) +�n′(t) ≥ 0,

∀i, ∀n, ∀n′, ∀t (4b)

cn −Qn�n(t)−Qn

∑
n′∈N ′\{n}

βn′(t)− ρn(t)

+ δn(t)− δn(t+ 1) ≥ 0, ∀n ∈ N ′, ∀t

cn −Qn�n(t)−Qn

∑
n′∈N ′

βn′(t)− ρn(t)

+ δn(t)− δn(t+ 1) ≥ 0, ∀n ∈ N −N ′, ∀t (4c)

dln − ψl
n(t) ≥ 0, ∀l, ∀n,∀t (4d)

dn − δn(t) ≥ 0, ∀n,∀t (4e)

where αil
nn′ , θin(t), �n(t), βn(t), ψ

l
n(t), δn(t), ρn(t) are corre-

sponding dual variables for the constraints (1a)–(1c) and con-
straints (3a)–(3d).

C. Competitive Ratio

We now employ the primal-dual analysis framework and
KKT conditions to obtain the gap of the fractional solutions
x̃(t), ỹ(t), z̃(t). Subsequently, the relationship between z̃(t)
and z(t) is employed as a pivotal conduit to derive the gap
achieved by the integral solutionsx(t),y(t),z(t). In the follow-
ing analysis, we use D∗

1 to denote the optimal objective value
for the dual problem D1.

Theorem 3: The total cost P(x̃(t), ỹ(t), z̃(t)|∀t) achieved
by the ORR is no greater than R1D

∗
1, where R1 = 1 + ηx(1 +

ε)|N |+ ηz(1 + ε′). This implies that the fractional gap is R1.
The detailed proof is given in Appendix D, available online.
Theorem 4: The total costE[P(x(t),y(t),z(t)|∀t)] achieved

by the ORR is no greater than R2P(x̃(t), ỹ(t), z̃(t)|∀t), where
R2 = ζ2(1 + ζ1) + ζ3ζ2(1 + ζ1) + ζ4ζ2(1 + ζ1) + ζ5 + ζ6.
This implies that the rounding gap is R2.

The detailed proof is given in Appendix E, available online.
Based on the gap of the fractional solutions x̃(t), ỹ(t), z̃(t)

and the gap of the final integral solutions x(t),y(t),z(t), we
derive the competitive ratio of the ORR as follow.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 337

Theorem 5: The competitive ratio of the ORR is R1R2 (i.e.,
E[P(x(t),y(t),z(t)|∀t)] ≤ R1R2P

∗). This implies that the to-
tal cost achieved by the ORR is no larger than R1R2 times the
cost returned by the optimum offline solution in the worst case.

The detailed proof is given in Appendix F, available online.

VI. EVALUATION

This section conducts a performance evaluation of the ORR.
As far as our knowledge extends, there is currently no openly
accessible dataset encompassing all the features mentioned
above, including dynamic user requests across geographically
dispersed edge clusters and user requests for various services
along with their corresponding containers. To this end, we con-
duct simulation experiments that capture these characteristics,
leveraging both simulated and real-world data. The parameter
settings of the edge network and the user request are first
illustrated. Then, the baseline algorithms are described. Finally,
we present the results of the performance evaluation.

A. Evaluation Setup

Parameter Settings: Our evaluation considers multiple geo-
graphically dispersed edge clusters that can be interconnected.
These edge clusters support 20 different types of services (i.e.,
20 containers). The real container images and layers data, which
were obtained by crawling DockerHub [51], have been utilized
in multiple research papers [10], [20]. The average size of the
layers comprising these container images is 1377 MB. The
bandwidth of each edge cluster is configured between 200 Mbps
and 1800 Mbps, while the request processing capability for
each server is set between 10 and 90. Additionally, the max-
imum number of servers in the edge cluster ranges from 30
to 90. Considering data-intensive requests for services such as
autopilot, the data size for requests is set from 12.5 MB to
50 MB. The communication delays among the edge clusters
are set from 0.1 to 0.5 seconds, and the communication delays
between the edge cluster and the container image registry are
set from 0.5 to 1 seconds. Furthermore, we set ε and ε′ to 0.1 to
balance the trade-off between time efficiency and optimality of
the algorithm.

User Requests: The simulated user request traces are gener-
ated using either a uniform distribution with an expected value
of 50 requests or a Poisson distribution with λ ranging from
40 to 50 requests. To emulate the irregular and intermittent
characteristics of edge requests, a probability of 0.4 is applied
for sending requests to the edge cluster within each time slot.
Moreover, the real user request traces used in the experiments
are from Microsoft Azure workload [52].

Baseline Algorithms: We compare the proposed ORR algo-
rithm against the following baseline algorithms:

1) Rounding [26], which employs a linear programming
technique, followed by a rounding procedure to derive the
feasible solutions.

2) IGreedy [21], which employs iterative greedy algorithms
for cluster selection to schedule requests. Subsequently, it
makes decisions to enable the deployment of correspond-
ing containers.

3) ILP [53], which uses the Matlab intlinprog solver to solve
each one-shot integer linear program separately, ignoring
the switching costs.

4) Greedy, which solves the one-shot slice of the LJRCR at
every time slot, targeting the linear costs while ignoring
the switching costs.

5) LGreedy, which further considers the layer-sharing of
container images based on the Greedy algorithm.

6) RL [23], which utilizes reinforcement learning to select
clusters for request scheduling, followed by decision-
making to enable the deployment of corresponding con-
tainers and the provisioning of necessary resources.

B. Evaluation Results

We perform experiments to evaluate the performance of the
ORR in various edge computing scenarios, starting with small-
scale networks featuring five geographically distributed edge
clusters. The small-scale evaluation examined several critical
factors, such as different types of user requests, varying time
slots, various request processing capabilities, and differing band-
widths. Furthermore, to evaluate the scalability performance of
the algorithm, we subsequently increase the number of edge
clusters to eight. In each experiment, the parameters of the edge
clusters are randomly generated, and each experiment is con-
ducted multiple times to obtain an averaged cost measurement.

Performance with different user requests: Fig. 3 displays
the total cost achieved by different algorithms for different
user request traces. The ORR algorithm demonstrates superior
performance compared to the baseline algorithms. In Fig. 3(a),
ORR’s total cost is reduced by up to 40.1% compared to the
baseline algorithms. The superior performance of ORR can be
primarily attributed to two key aspects. First, the formulated
problem effectively integrates various cost factors involved in
the container orchestration process. Second, ORR is capable of
efficiently solving the formulated problem to derive appropriate
decisions.

The baseline algorithms, such as Greedy, ILP, RL, etc., strug-
gle to effectively address the challenges posed by the dynamic
nature of the online problem, where future information remains
unknown. These baseline methods often rely on heuristic or
localized decision-making strategies, which only optimize for
the immediate time slot and fail to consider the overall cost
across successive time slots. For example, the ILP method, while
capable of finding optimal solutions for static scenarios, suffers
from computational inefficiency and is unable to adapt to the
dynamic online environment. Similarly, RL approaches may re-
quire significant training data and struggle with the exploration-
exploitation trade-off, leading to suboptimal performance in
rapidly changing online scenarios. These baseline algorithms do
not account for the interplay between multiple decisions, result-
ing in suboptimal strategies and higher overall costs. In contrast,
the proposed ORR algorithm employs a regularization-based
approach that decomposes the time-dependent switching costs
into a series of time-independent terms, facilitating optimization
for multiple interplay decisions. Furthermore, ORR incorporates
a stepwise rounding process during the rounding of fractional

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

338 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 3. The total cost incurred by different user request traces.

Fig. 4. The total cost for different request processing capabilities and band-
widths.

solutions, ensuring compensation to prevent a significant in-
crease in total costs. By combining these two procedures, ORR
achieves online decision-making with guaranteed performance,
outperforming other baseline algorithms.

Impact of request processing capability and bandwidth: We
next examine the impact of request processing capability (on
average) and bandwidth (on average) on the total cost of several
algorithms, as illustrated in Fig. 4. From Fig. 4(a), we observe
that the total cost of all algorithms decreases as the request
processing capacity increases. This is because a higher request
processing capacity enables the edge cluster to activate fewer
servers for request processing, thereby reducing server energy
and server wake-up costs. Additionally, ORR outperforms base-
line algorithms, reducing the total cost by at least 13.2%. This
improvement is attributed to ORR’s ability to make decisions
that account for online dynamics and both current and past
system states, whereas baseline algorithms such as Greedy, ILP,
and RL primarily focus on local or heuristic-based decisions,
limiting their capacity to optimize long-term performance.

Similarly, Fig. 4(b) illustrates the general trend of decreas-
ing total costs for all algorithms as bandwidth increases. This
is because higher bandwidth accelerates the downloading of
container layers from the image registry and reduces request
scheduling delay. It should be noted that in each experiment,
the parameters of the edge clusters were randomly generated,
resulting in variants in cost due to changes in these parameters.
Nonetheless, under identical conditions, the ORR algorithm
consistently outperforms the baseline algorithms, achieving a
reduction in total cost of at least 19.5%. The ORR algorithm
leverages layer-sharing and joint decision-making to effectively

Fig. 5. The QoS and consumption for different request processing capabilities.

Fig. 6. The QoS and consumption for different time slots.

handle the dynamic of online scenarios, thereby reducing the
need for repeated layer downloads and exhibiting superior
performance. It is worth noting that the total cost reduction
trend diminishes as the bandwidth increases. This is because
communication delays become the primary contributor to delay
rather than bandwidth bottlenecks.

Performance of QoS and consumption: In the cost structure for
the LJRCR, request scheduling, container placement, and server
wake-up costs are linked to user-perceived delays, collectively
termed Quality of Service (QoS). Conversely, storage and server
energy costs pertain to the service provider’s consumption,
defined as consumption. The performance of each algorithm
is assessed by decomposing the total cost into two components:
QoS and consumption. To this end, Figs. 5 and 6 present the
QoS and consumption for varying average request processing
capabilities and time slots, respectively. As in Fig. 6(a) and
(b), it can be observed that ORR’s consumption is comparable

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 339

Fig. 7. The large-scale edge networks evaluation for different request process-
ing capabilities and bandwidths.

Fig. 8. The large-scale edge networks evaluation for QoS and consumption.

to the baseline algorithms while providing significantly bet-
ter QoS. This indicates that ORR can maintain relatively low
consumption while offering better service to users. In addition,
Fig. 5(a) illustrates that the QoS of all algorithms decreases
with increased request processing capacity, mainly attributed to
the reduced number of servers waken-up by the edge clusters,
leading to a lower server wake-up delay. These experimental
results demonstrate that the LJRCR effectively captures the
multifaceted characteristics of associated container orchestrion
costs, enabling the system to maintain lower consumption while
providing a higher QoS to users.

Performance in large-scale edge networks: Finally, we evalu-
ate ORR in large-scale edge computing networks by increasing
the number of edge clusters to 8. Fig. 7(a) and (b) illustrate
the variation in the total cost achieved by all the algorithms
with different request processing capabilities (on average) and
bandwidths (on average), respectively. Fig. 8(a) and (b) present
the variation in QoS and consumption with different request
processing capabilities (on average), respectively. The results,
consistent with those obtained using 5 clusters, confirm that the
proposed ORR demonstrates robust performance under these
conditions.

However, as the number of edge clusters increases signif-
icantly, the proposed ORR encounters challenges related to
computational efficiency. Specifically, ORR obtains the frac-
tional solution by employing the interior-point method, which is
known for its large time and space complexity, particularly as the
problem size escalates. With the significant growth in the number

of edge clusters, there is a corresponding increase in the number
of constraints and decision variables, leading to a substantial
rise in both the time required to solve the optimization problem
and the memory needed to store and process the associated
data structures. In extreme cases, this can exceed the available
resources, resulting in premature termination due to memory
limitations. This highlights a critical challenge in scaling the
proposed method to accommodate a significantly larger number
of edge clusters. While the ORR performs well with a moderate
number of clusters, further research is required to extend the
ORR that can effectively handle the increased complexity.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the layer-aware joint decisions of
request scheduling, container placement, and resource provision
in edge computing. We formulated a joint online optimization
problem and proposed the ORR algorithm, which employs an
online regularization-based approach combined with a stepwise
rounding process as an effective solution to solve the problem.
Furthermore, we provided rigorous proof of the parametric
competitive ratio of the ORR. Our extensive simulation exper-
iments validated the effectiveness of the ORR, as it achieved
at about 20% improvements in performance compared to the
baseline algorithms. By reducing the need for repeated layer
downloads and utilizing joint decision-making strategies, ORR
demonstrated superior performance in various heterogeneous
scenarios. Although the ORR algorithm performed effectively
with a moderate number of clusters, it faced limitations when
the number of edge clusters increases significantly. Future work
will extend the proposed ORR to effectively accommodate a
significantly larger number of edge clusters. Additionally, im-
plementing the proposed algorithm within a prototype system
for edge computing networks based on Kubernetes would be a
valuable next step.

REFERENCES

[1] W. Z. Khan et al., “Edge computing: A survey,” Future Gener. Comput.
Syst., vol. 97, pp. 219–235, 2019.

[2] M. Billinghurst et al., “A survey of augmented reality,” Found. Trends
Hum.–Comput. Interaction, vol. 8, no. 2/3, pp. 73–272, 2015.

[3] J. Wang, J. Liu, and N. Kato, “Networking and communications in au-
tonomous driving: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1243–1274, Second Quarter, 2019.

[4] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and
learning algorithms for containers in fog computing,” IEEE Trans. Serv.
Comput., vol. 12, no. 5, pp. 712–725, Sep./Oct. 2019.

[5] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge ser-
vices leveraging container layered storage,” IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[6] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-aware
microservice coordination in mobile edge computing: A reinforcement
learning approach,” IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 939–
951, Mar. 2021.

[7] A. M. Potdar, D. Narayan, S. Kengond, and M. M. Mulla, “Performance
evaluation of docker container and virtual machine,” Procedia Comput.
Sci., vol. 171, pp. 1419–1428, 2020.

[8] Docker, 2018. [Online]. Available: https://www.docker.com/resources/
what-container/

[9] A. Anwar et al., “Improving docker registry design based on production
workload analysis,” in Proc. 16th USENIX Conf. File Storage Technol.,
2018, pp. 265–278.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/

340 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

[10] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning scheduling
algorithms for containers in mobile edge computing,” IEEE Trans. Mobile
Comput., vol. 22, no. 6, pp. 3444–3459, Jun. 2023.

[11] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient
algorithms for placement of service function chains with ordering con-
straints,” in Proc. 2018 IEEE Conf. Comput. Commun., 2018, pp. 774–782.

[12] U. Pongsakorn, Y. Watashiba, K. Ichikawa, S. Date, and H. Iida, “Container
rebalancing: Towards proactive linux containers placement optimization
in a data center,” in Proc. IEEE 41st Annu. Comput. Softw. Appl. Conf.,
2017, pp. 788–795.

[13] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “DRAPS:
Dynamic and resource-aware placement scheme for docker containers
in a heterogeneous cluster,” in Proc. IEEE 36th Int. Perform. Comput.
Commun. Conf., 2017, pp. 1–8.

[14] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer,
“SGX-aware container orchestration for heterogeneous clusters,” in Proc.
IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 730–741.

[15] P. Kayal and J. Liebeherr, “Distributed service placement in fog computing:
An iterative combinatorial auction approach,” in Proc. IEEE 39th Int. Conf.
Distrib. Comput. Syst., 2019, pp. 2145–2156.

[16] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
Proc. 2018 IEEE Conf. Comput. Commun., 2018, pp. 468–476.

[17] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-optimized
containers,” in Proc. 2018 USENIX Annu. Tech. Conf., 2018, pp. 57–70.

[18] Y. Li, B. An, J. Ma, and D. Cao, “Comparison between chunk-based and
layer-based container image storage approaches: An empirical study,” in
Proc. 2019 IEEE Int. Conf. Service-Oriented Syst. Eng., 2019, pp. 197–
1975.

[19] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Multi-user layer-
aware online container migration in edge-assisted vehicular networks,”
IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 1807–1822, Apr. 2024.

[20] J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient container
assignment and layer sequencing in edge computing,” IEEE Trans. Serv.
Comput., vol. 16, no. 2, pp. 1118–1131, Mar./Apr. 2023.

[21] L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer aware microservice
placement and request scheduling at the edge,” in Proc. 2021 IEEE Conf.
Comput. Commun., 2021, pp. 1–9.

[22] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring
layered container structure for cost efficient microservice deployment,” in
Proc. 2021 IEEE Conf. Comput. Commun., 2021, pp. 1–9.

[23] X. Tian, H. Meng, Y. Shen, J. Zhang, Y. Chen, and Y. Li, “Dynamic
microservice deployment and offloading for things-edge-cloud com-
puting,” IEEE Internet Things J., vol. 11, no. 11, pp. 19537–19548,
Jun. 2024.

[24] S. Albers, “On energy conservation in data centers,” ACM Trans. Parallel
Comput., vol. 6, no. 3, pp. 1–26, 2019.

[25] A. Borodin and R. El-Yaniv, Online Computation and Competitive Anal-
ysis. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[26] L. Gu, Z. Chen, H. Xu, D. Zeng, B. Li, and H. Jin, “Layer-aware collabora-
tive microservice deployment toward maximal edge throughput,” in Proc.
2022 IEEE Conf. Comput. Commun., 2022, pp. 71–79.

[27] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in Proc. 2017 IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[28] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service placement
problem in fog and edge computing,” ACM Comput. Surv., vol. 53, no. 3,
pp. 1–35, 2020.

[29] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven
deep reinforcement learning for scalable fog and service place-
ment,” IEEE Trans. Serv. Comput., vol. 15, no. 5, pp. 2671–2684,
Sep./Oct. 2022.

[30] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice
applications in clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1,
pp. 98–115, Jan. 2021.

[31] J. Zhang, X. Zhou, T. Ge, X. Wang, and T. Hwang, “Joint task scheduling
and containerizing for efficient edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 8, pp. 2086–2100, Aug. 2021.

[32] T. Menouer, “KCSS: Kubernetes container scheduling strategy,” J. Super-
computing, vol. 77, no. 5, pp. 4267–4293, 2021.

[33] S. Li et al., “Commutativity-guaranteed docker image reconstruction
towards effective layer sharing,” in Proc. ACM Web Conf., 2022,
pp. 3358–3366.

[34] Y. Liu, B. Yang, Y. Wu, C. Chen, and X. Guan, “How to share: Balancing
layer and chain sharing in industrial microservice deployment,” IEEE
Trans. Serv. Comput., vol. 16, no. 4, pp. 2685–2698, Jul./Aug. 2023.

[35] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 8, pp. 1751–1767, Aug. 2018.

[36] W. Chu, P. Yu, Z. Yu, J. C. S. Lui, and Y. Lin, “Online optimal service
selection, resource allocation and task offloading for multi-access edge
computing: A utility-based approach,” IEEE Trans. Mobile Comput.,
vol. 22, no. 7, pp. 4150–4167, Jul. 2023.

[37] J. Zhang et al., “Joint resource allocation for latency-sensitive services over
mobile edge computing networks with caching,” IEEE Internet Things J.,
vol. 6, no. 3, pp. 4283–4294, Jun. 2019.

[38] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[39] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource
allocation in UAV-enabled mobile edge computing,” IEEE Internet Things
J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020.

[40] F. Khoramnejad and M. Erol-Kantarci, “On joint offloading and resource
allocation: A double deep Q-network approach,” IEEE Trans. Cogn.
Commun. Netw., vol. 7, no. 4, pp. 1126–1141, Dec. 2021.

[41] Z. Nan, S. Zhou, Y. Jia, and Z. Niu, “Joint task offloading and resource
allocation for vehicular edge computing with result feedback delay,” IEEE
Trans. Wireless Commun., vol. 22, no. 10, pp. 6547–6561, Oct. 2023.

[42] J. Shu, B. Li, and W. Zheng, “Design and implementation of an SAN
system based on the fiber channel protocol,” IEEE Trans. Comput., vol. 54,
no. 4, pp. 439–448, Apr. 2005.

[43] X. Shang, Y. Huang, Y. Mao, Z. Liu, and Y. Yang, “Enabling QoE support
for interactive applications over mobile edge with high user mobility,” in
Proc. 2022 IEEE Conf. Comput. Commun., 2022, pp. 1289–1298.

[44] T. Carnes and D. Shmoys, “Primal-dual schema for capacitated covering
problems,” in Proc. Int. Conf. Integer Program. Combinatorial Optim.,
Springer, 2008, pp. 288–302.

[45] K. Poularakis et al., “Service placement and request routing in MEC
networks with storage, computation, and communication constraints,”
IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[46] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via regulariza-
tion,” in Proc. 25th Annu. ACM-SIAM Symp. Discrete Algorithms, SIAM,
2014, pp. 436–444.

[47] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming. Philadelphia, PA, USA: SIAM, 1994.

[48] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Dependent
rounding and its applications to approximation algorithms,” J. ACM,
vol. 53, no. 3, pp. 324–360, 2006.

[49] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cam-
bridge, U.K.: Cambridge Univ. Press, 2004.

[50] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips, “Strengthening
integrality gaps for capacitated network design and covering problems,”
in Proc. 11th Annu. ACM-SIAM Symp. Discrete Algorithms, SIAM, 2000,
pp. 106–115.

[51] Dockerhub, 2014. [Online]. Available: https://hub.docker.com
[52] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing

the serverless workload at a large cloud provider,” in Proc. 2020 USENIX
Annu. Tech. Conf., 2020, pp. 205–218.

[53] intlinprog solver, 2014. [Online]. Available: https://www.mathworks.com/
help/optim/ug/intlinprog.html

Zhenzheng Li received the BS degree from the
School of Information Technology, Beijing Institute
of Technology, Zhuhai, China, in 2019, and the MS
degree from the School of Information and Con-
trol Engineering, China University of Mining and
Technology, China, in 2022. He is currently working
toward the PhD degree with the School of Artificial
Intelligence, Beijing Normal University, China. His
current research interests include edge computing and
resource scheduling.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

https://hub.docker.com
https://www.mathworks.com/help/optim/ug/intlinprog.html
https://www.mathworks.com/help/optim/ug/intlinprog.html

LI et al.: ONLINE LAYER-AWARE JOINT REQUEST SCHEDULING, CONTAINER PLACEMENT, AND RESOURCE PROVISION IN EDGE COMPUTING 341

Jiong Lou (Member, IEEE) received the BS and
PhD degrees from the Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong University,
China, in 2016 and 2023, respectively. Since 2023, he
has held the position of research assistant professor
with the Department of Computer Science and En-
gineering, Shanghai Jiao Tong University, China. He
has published more than ten papers in leading journals
and conferences (e.g., IEEE/ACM Transactions on
Networking, IEEE Transactions on Mobile Comput-
ing and IEEE Transactions on Services Computing).

His current research interests include edge computing, task scheduling and
container management. He has served as a reviewer for Computer Networks,
Journal of Parallel and Distributed Computing, IEEE Internet of Things Journal,
and ICDCS.

Zhiqing Tang (Member, IEEE) received the BS de-
gree from the School of Communication and Infor-
mation Engineering, University of Electronic Science
and Technology of China, China, in 2015, and the PhD
degree from the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China,
in 2022. He is currently an assistant professor with
the Advanced Institute of Natural Sciences, Beijing
Normal University, China. His research interests
include edge computing, resource scheduling, and
reinforcement learning.

Jianxiong Guo (Member, IEEE) received the BE
degree from the School of Chemistry and Chemical
Engineering, South China University of Technology,
Guangzhou, China, in 2015, and the PhD degree from
the Department of Computer Science, University of
Texas at Dallas, Richardson, Texas, in 2021. He is
currently an associate professor with the Advanced
Institute of Natural Sciences, Beijing Normal Uni-
versity, and also with the Guangdong Key Lab of
AI and Multi-Modal Data Processing, BNU-HKBU
United International College, Zhuhai, China. He is a

member of ACM/CCF. His research interests include social networks, wireless
sensor networks, combinatorial optimization, and machine learning.

Tian Wang (Senior Member, IEEE) received the BSc
and MSc degrees in computer science from Central
South University, in 2004 and 2007, respectively, and
the PhD degree in computer science from the City
University of Hong Kong, in 2011. Currently, he is a
professor with the Institute of Artificial Intelligence
and Future Networks, Beijing Normal University. His
research interests include the Internet of Things, edge
computing, and mobile computing. He has 27 patents
and has published more than 200 papers in high-level
journals and conferences. He has more than 14000

citations, according to Google Scholar. His H-index is 68. He has managed six
national natural science projects (including 2 sub-projects) and four provincial-
level projects.

Weijia Jia (Fellow, IEEE) is currently the director
of Institute of Artificial Intelligence and Future Net-
working, and the director of Super Intelligent Com-
puter Center, Beijing Normal University, Zhuhai, also
a chair professor with UIC, Zhuhai, Guangdong,
China. He has served as the VP for research with UIC,
in 6/2020-7/2024. Prior joining BNU, he served as the
deputy director of State Key Laboratory of Internet
of Things for Smart City, The University of Macau
and Zhiyuan chair professor with Shanghai Jiaotong
University, PR China. From 95-13, he worked with

the City University of Hong Kong as a professor. His contributions have
been recoganized for the research of edge AI, optimal network routing and
deployment, vertex cover, anycast and multicast protocols, sensors networking,
knowledge relation extractions, NLP and intelligent edge computing. He has
more than 700 publications in the prestige international journals/conferences
and research books and book chapters. He has received the best product awards
from the International Science & Tech. Expo (Shenzhen), in 2011/2012 and
the 1st Prize of Scientific Research Awards from the Ministry of Education
of China, in 2017 (list 2), and top two percent World Scientists in Stanford-list
(2020–2024) and many provincial science and tech awards. He has served as area
editor for various prestige international journals, chair and PC member/keynote
speaker for many top international conferences. He is the distinguished member
of CCF.

Wei Zhao (Fellow, IEEE) received the undergraduate
degree in physics with Shaanxi Normal University,
China, in 1977, and the MSc and PhD degrees in
computer and information sciences from the Univer-
sity of Massachusetts at Amherst, in 1983 and 1986,
respectively. He has served important leadership roles
in academic including the chief research officer with
the American University of Sharjah, the chair of
Academic Council with CAS Shenzhen Institute of
Advanced Technology, the eighth Rector of the Uni-
versity of Macau, the dean of science with Rensselaer

Polytechnic Institute, the director for the Division of Computer and Network
Systems in the U.S. National Science Foundation, and the senior associate vice
president for Research with Texas A&M University. He has made significant
contributions to cyber-physical systems, distributed computing, real-time sys-
tems, and computer networks. He led the effort to define the research agenda of
and to create the very first funding program for cyber-physical systems, in 2006.
His research results have been adopted in the standard of Survivable Adaptable
Fiber Optic Embedded Network. He was awarded the Lifelong Achievement
Award by the Chinese Association of Science and Technology, in 2005.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:08:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

