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Abstract—In Mobile Edge Computing (MEC), Internet of Things
(IoT) devices offload computationally-intensive tasks to edge nodes,
where they are executed within containers, reducing the reliance
on centralized cloud infrastructure. Cluster software upgrades
are essential to maintain the efficient and secure operation of edge
clusters. However, traditional cloud cluster upgrade strategies are
ill-suited for edge clusters due to their geographically distributed
nature and resource limitations. Therefore, it is crucial to properly
schedule containers during edge cluster upgrades to minimize the
impact on running tasks. This article proposes a latency-aware
container scheduling algorithm for efficient edge cluster upgrad-
ing. Specifically: 1) We formulate the online container scheduling
problem for edge cluster upgrade to minimize the total task latency.
2) We propose a policy gradient-based reinforcement learning
algorithm that addresses this problem by considering the char-
acteristics of MEC, including heterogeneous resources, image dis-
tribution, and low-latency requirements. Subsequently, a location
feature extraction method based on self-attention is designed to
fully extract and utilize edge node distribution. 3) Experiments
based on simulated and real-world data traces demonstrate that
our algorithm reduces total task latency by approximately 30%
compared to baseline algorithms.

Index Terms—Container scheduling, Internet of Things, mobile
edge computing, reinforcement learning.
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I. INTRODUCTION

N THE era of the Internet of Things (IoT), Mobile Edge

Computing (MEC) has emerged as a promising technol-
ogy that brings computing and data storage closer to IoT
devices [1]. This approach significantly reduces latency and
bandwidth consumption associated with IoT devices and data
center communications, making it more suitable for handling
latency-sensitive tasks and services [2]. With the evolution of
MEQC, containers and Kubernetes are increasingly being used for
service deployment [3]. Containers are lightweight and portable,
frequently employed in MEC to deploy and manage applications
while facilitating process and resource isolation [4], [5], [6].
Kubernetes [7] is a renowned open-source platform that offers
robust tools for deploying, managing, and scaling containerized
applications.

An edge cluster consists of a network of interconnected edge
nodes that collaborate with each other. Cluster upgrades can
be performed for various reasons, such as security patches
or the introduction of new features [8]. Common cluster up-
grade strategies include in-place upgrades, canary upgrades,
and rolling upgrades [9]. Such upgrades are essential but may
negatively impact the IoT device experience. Especially in edge
clusters, upgrades may negatively impact running containers due
to geographical distribution and limited resources. In large-scale
systems, upgrades take hours, or even much longer [10]. Con-
sidering that more than 10,000 system updates are carried out in
the production environment per year [11], how to minimize the
impact on running tasks during cluster upgrades poses an issue.

General resource unavailability at run-time usually refers
to the exhaustion of computation or storage resources on a
node, which does not affect the tasks already running on the
node. However, during upgrades, a node cannot accept new
tasks and can also not run tasks. It is necessary to reschedule
them appropriately to guarantee the seamless execution of tasks
during upgrades. This unavailability differs from the traditional
resource shortage and poses significant challenges for schedul-
ing policies. The default scheduling policy, taking into account
factors such as resource availability, user preferences, and other
constraints [12], does not meet the requirements of edge clusters
in certain situations. Therefore, the first challenge is how to
fully explore and utilize various information during edge cluster
upgrades to enhance scheduling decisions. Given the limited
storage and bandwidth resources at the edge, the distribution of
images has a substantial impact on scheduling. Many scheduling
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policies consider migrating tasks from one edge node to another
atrun-time [13], [14], [15]. Most ignore the node upgrade status,
but the node upgrade will affect its availability. For example,
scheduling tasks to nodes that have been upgraded instead of
nodes that have not yet been upgraded can reduce additional task
migration latencies caused by node upgrades. This aspect is often
ignored in traditional scheduling policies, which mainly focus on
computation and communication resources without adequately
considering the dynamic factor of node upgrades. However,
simply considering the distribution of images and upgrade status
is insufficient [16], the location information of the nodes is
also crucial. Scheduling containers to distant edge nodes based
solely on resource availability can lead to high communication
latency. Therefore, the self-attention-based network is designed
to extract the location information of nodes and tasks. This
network can better understand the relative position relationship
between edge nodes and tasks.

Another challenge lies in making online scheduling decisions
that yield long-term benefits regarding reduced total task latency.
Traditional scheduling algorithms primarily encompass rule-
based, heuristic-based, or optimization-based methods [17],
[18], [19]. Nonetheless, these algorithms cannot optimize long-
term minimum latency in dynamic and diverse MEC environ-
ments. Recently, Reinforcement Learning (RL) algorithms have
been widely applied to various optimization problems [20]. The
policy gradient-based RL algorithm has exhibited promising
outcomes for optimal resource scheduling problems in MEC [6].
Consequently, a policy gradient-based RL algorithm is proposed
for making online scheduling decisions.

In this paper, we first model the Online Container Scheduling
(OCS) problem for edge cluster upgrades to minimize the latency
of IoT tasks while accounting for the geographic distribution,
image locality, and limited resources of edge nodes. Second,
the self-attention-based network is used to extract the location
information of nodes and tasks. The policy network and value
function of the RL agent are also meticulously designed. Then,
we propose a policy gradient-based OCS algorithm. Finally, we
implement a set of MEC scenarios based on simulated and real-
world data to verify the effectiveness of the OCS algorithm and
compare it with existing scheduling algorithms. Experimental
results demonstrate that our proposed algorithm significantly
reduces latency and outperforms all baseline algorithms.

In this extended version of our work [16], we focus on
enhancing the understanding and effectiveness of latency-aware
container scheduling in edge cluster upgrade scenarios. First, we
refine the problem modeling. This modeling is novel in that it
fully considers the unique challenges of scheduling containers
during edge cluster upgrades. Second, we improve the algorithm.
This algorithm uniquely adapts to changing task locations, a
feature not adequately addressed in previous works. Further-
more, we expand the scope of our experimental validation.
These experiments not only verify the effectiveness of our
algorithm but also its scalability and applicability in the real-
world. Additionally, we introduce a comprehensive discussion
on the practical deployment of our algorithm in a Kubernetes
cluster. The discussion innovatively highlights challenges and
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considerations in practical implementation. In summary, the
contributions of this paper are as follows:

1) We model the latency-aware container scheduling prob-
lem in edge cluster upgrade scenarios for the first time,
including comprehensive motivations and case studies, to
minimize total task latency.

2) To fully consider the distribution of nodes and the vari-
ation of task positions, a self-attention-based method is
designed to extract the location information of nodes and
tasks. Then, an OCS algorithm is proposed based on the
policy gradient RL that continually makes online schedul-
ing decisions. The upgrade status and the distribution of
images are also taken into consideration.

3) We conductlarge-scale experiments on simulated and real-
world data traces to evaluate the effectiveness of the OCS
algorithm. Our experimental results demonstrate that our
proposed algorithm outperforms all baseline algorithms,
reducing the total task latency by about 30%.

The remainder of the paper is organized as follows. Section II
gives a brief overview of the related work and motivation.
Section III presents the system model and problem formulation.
Section IV describes the OCS algorithm. The experimental set-
tings and evaluation results are shown in Section V. Section VI
gives some discussions. Finally, Section VII concludes the paper
and discusses future directions.

II. RELATED WORK AND MOTIVATION
A. Container in Mobile Edge Computing

Containers are lightweight virtualization techniques that al-
low for the efficient deployment of applications in MEC environ-
ments [4]. As MEC continues to grow in popularity, it becomes
evident that containers will play a critical role in enabling
efficient and effective deployment at the edge. For example,
Tang et al. [21] propose a container migration algorithm and
architecture to support the fast migration of tasks. Regarding
the problem of service migration in edge computing, Ma et
al. [4] propose an edge computing platform architecture that
supports the seamless migration of services. Lou et al. [13]
introduce a method to jointly determine container assignment
and layer sequencing to reduce container startup latency. Rossi
etal. [22] present a Kubernetes-based orchestration tool to solve
container deployment problems. Alameddine et al. [23] intro-
duce a logic-based Benders decomposition approach to solve
the complex dynamic task offloading and scheduling problem
efficiently. Ayoub et al. [24] propose a multi-objective Integer
Linear Programming (ILP) model and heuristic algorithms for
efficient online Virtual Machine (VM) migration.

B. RL-Based Scheduling

RL has received substantial attention and has been exten-
sively employed in MEC for task scheduling. An RL agent
can guarantee optimal resource allocation and enhanced system
performance by perpetually learning from the environment and
refining its policy. For example, Wang et al. [5] construct an
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TABLE I
COMPARISON WITH EXISTING TECHNOLOGIES

. Optimization . . Resource
Paper  Research issue Background objective Online  Distance availability Methodology
[23] Task offloading and scheduling  Low-latency IoT services Latency Benders decomposition
[15] Task assignment and migration =~ Datacenter energy-saving Energy v RL-based
[24] Virtual machine migration Datacenter disaster resilience Latency v v v Heuristic-based
[25] Virtual machine migration Datacenter upgrades Latency v RL-based
[16] Container scheduling Edge cluster upgrades Latency v v RL-based
Ours  Container scheduling Edge cluster upgrades Latency v v v RL-based, deep learning
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Fig. 1. An example of edge cluster upgrade.

RL-based microservice coordination scheme. Ho et al. [26] pro-
pose a MEC offloading framework that can jointly accomplish
server selection, cooperative offloading, and handover. Aiming
at the task migration problem in MEC, Liu et al. [27] design a
distributed task migration algorithm based on the anti-fact multi-
agent RL algorithm. Liu et al. [28] propose a load-balancing
aware networking approach for efficient data processing in IoT
edge systems and use an RL model. Ning et al. [29] propose
an RL-based intent-driven traffic control system to optimize
network resource orchestration and improve profits. Tang et
al. [6] propose a layer dependency-aware learning schedul-
ing algorithm based on container technology in MEC. Lou et
al. [15] introduce an energy-efficient task scheduling method
using RL for optimizing both task assignment and migration in
data centers. Chen et al. [25] present a method that employs
RL to optimize the scheduling of virtual machine migrations
during datacenter upgrades. The detailed comparison between
our approach and existing techniques is shown in Table 1.

C. Case Study

We model a one-round upgrade scenario for an edge cluster.
As illustrated in Fig. 1, computation-intensive tasks from IoT
devices are offloaded to edge nodes, where the results are pro-
cessed and returned. Tasks are executed in containers, which
require the corresponding image to be pulled locally before
execution. All edge nodes in the cluster upgrade sequentially,

- Node is not Upgrading D Node is Upgrading ---» Scheduling Container

Fig. 2. Container scheduling in edge cluster upgrade.

with the edge node being upgraded in green and the edge
node not being upgraded in blue. All containers on an edge
node must be scheduled to another node before upgrading to
ensure uninterrupted service. During the upgrade, new tasks are
continuously offloaded to edge nodes, requiring decisions to be
made regarding which node they are scheduled on. Meanwhile,
resources (i.e., CPU, memory, etc.) on edge nodes are limited,
and containers cannot be scheduled on nodes that do not meet
resource requirements. Additionally, the node being upgraded
is set as unschedulable. Different container images and resource
quotas may be required for various tasks, so practical scheduling
algorithms and resource management policies must be designed.

Fig. 2 illustrates the container scheduling process in an edge
cluster upgrade scenario with four edge nodes. From left to right,
it shows the progression of edge node upgrades over time. The
green color represents an edge node currently upgrading and in
an unschedulable state. The blue color represents an edge node
that is not being upgraded, and tasks with resource requirements
can be offloaded to this edge node to run in containers. Different
colored rectangles within the edge nodes represent different
tasks being executed. As can be seen from the figure, from
time g to t1, edge node n, is upgrading. Container scheduling
can be divided into two situations: 1) The edge node does not
upgrade during task execution. 75 is the execution time of a
task offloaded from an IoT device to edge node n;. Due to dif-
ferent geographical locations, image distribution, and resource
availability, offloading tasks to different edge nodes can affect
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TABLE II
NOTATIONS
Notation Definition
N Edge node set
n n*" edge node (n € N)
Cn(t) CPU resource of edge node n at time ¢
My (t) Memory resource of edge node n at time ¢
Dy (t) Storage capacity of edge node n at time ¢
Fy CPU frequency of edge node n
B, Bandwidth of edge node n
n(t) Upgrade status of edge node n at time ¢
on Location of edge node n
K Task set
k kP task (k € K)
Cr CPU request of task k
mp Memory request of task k
S CPU frequency request of task k
qr Image request of task k
Sqy Size of the image request of task k
dy, Size of task k
tg Release time of task k
ok (t) Location of task k at time ¢
Enk Uplink wireless transmission rate from task & to node n
I Image set
i it" image (i € I)
d; Size of image 7
Toom™ Communication latency for task k on edge node n
T;ff"”’L Download latency for task k on edge node n
o Computation latency for task k on edge node n

Ttotal Total latency for task k on edge node n
Tghene Queuing download latency on edge node n
Tn,i Whether image 7 is on edge node n

Yn,k Whether task & is executed on edge node n

their execution time. 2) The edge node upgrades during task
execution. 77 is the execution time of a task offloaded from an
IoT device to edge node nq. At time ¢, edge node n; completes
its upgrade, and edge node n, begins its upgrade. To ensure
uninterrupted service, all containers on the edge node must be
scheduled to another edge node that is not undergoing an upgrade
before the process begins. Therefore, the task is scheduled to
the non-upgrading edge node n; to continue execution, and 75
is the execution time of this task on edge node n;. Therefore,
unreasonable scheduling decisions can increase the total task
latency and strain the bandwidth resources of edge nodes. We
aim to make rational scheduling decisions to minimize the total
execution time of all tasks, denoted as Zi:l T;.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

For ease of reference, the main notations used in this paper
are summarized in Table II.

Edge Node: The set of edge nodes is defined as N =
{n1,n2,..., 7}, where | - | indicates the number of elements
in the set, e.g., [N| represents the number of edge nodes. The
remaining CPU and memory resources in the edge node n can
be represented by C), and M,,. p; is the upgrade status of the
edge node n. Furthermore, the CPU frequency of edge node n is
denoted as F),, with the bandwidth defined as B,,. Besides, the
number of images stored on the edge node is also influenced by
the limitation of the storage capacity of the edge node D,,.
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Task: The set of tasks offloaded by different IoT devices to the
edge node is K = {ki, k2, ...,k }. Meanwhile, we assume
that the resources requested by the task are the same as those
occupied by the container. The CPU and memory resources
requested by task k are ¢, and m,,. Moreover, the data size
of task k is dy, the release time of task k is ¢y, and the requested
image of task & is gj.

Container: The set of containers is denoted as C =
{c1,¢2,... ,c‘c‘}. The set of images is denoted as I =
{i1,42,..., 4}, with each image associated with a container.
The difference between a container and an image is only the
writable container layer [30], so requesting a container is equiv-
alent to requesting the corresponding image. The size of image
1 is denoted by d;.

In MEC, each IoT device is connected to the edge node
via a wireless link, while the edge node is connected to the
remote cloud via a wired backhaul link [31]. The edge nodes are
designed to process incoming tasks from various IoT devices
quickly and efficiently through wireless. The image is stored in
the remote cloud center and connected to the edge node through
a wired connection. Therefore, the task is transmitted to the edge
node through a wireless link, and the image is transmitted to the
edge node through a wired connection.

B. Latency

Communication latency: In the communication model, the
bandwidth allocation corresponds to the round-robin scheduling
discipline and stands for equal resource sharing of these IoT
devices associated with the edge node [32]. This design facili-
tates parallel processing for communication. In such a system,
multiple tasks can be transmitted simultaneously, effectively
eliminating transmission queuing latencies. The uplink wireless
transmission rate &, ;. from task % to node n is defined as [32]:

B 1og <1+p"“h””“>, 1)
Un

fn,k = 7
where B,, is the bandwidth of edge node n, and U,, is the number
of tasks transmitted to edge node n simultaneously. pj, is the
transmission power, h,,  is the channel gain between the IoT
device and the edge node, and o represents the power of Gaussian
white noise.

Therefore, the communication latency of task £ transmitted
to edge node n can be defined as follows:

comm __ dk
n,k - .
§7L,k

where dj, represents the size of the data required to execute a
task, which includes data files, configuration files, etc. Further-
more, similar to many studies [33], [34], we ignore the return
communication latency of the result because the result is small
compared with the task itself.

Download latency: Download latency refers to image down-
load latency. Within Kubernetes, three different image-pulling
policies are recognized: I[fNotPresent, Always, and Never. With-
out a specified policy, [fNotPresent is the default. This implies
that the image will be pulled from the remote repository if not

2
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stored locally. The download latency of the task can be obtained
as follows:

down __ Sai ueue
Tn,k = Tn,q, X ( + T;{ > ) (3)

B,

where ¢, is the image requested by task k and s, is the size of
the image required to process task k. It should be noted that dj,
and s, are distinct components; s, is specifically the size of the
image needed for task execution, while dj, includes all the other
data required for the task. z,, ; € {0, 1} is the binary variable to
indicate whether image ¢ is on edge node n. If z,, ; = 1, image
1 is on edge node n, otherwise not on edge node n. Each edge
node is associated with a download queue, and the images in
the queue are downloaded sequentially [13]. In this case, each
download request will cause a queuing delay because it must
wait for the previous image download to be completed. 7,7*“¢*¢
is the queuing download latency on edge node n. Therefore, if
the image required to process the task is available locally, the
download latency is 0.

Computation latency: Different tasks are executed in different
containers, and all tasks are executed in parallel. The computa-
tion latency can be calculated as follows:

comp __ E
- 3

= “)

where f}, is the CPU frequency requested by task k, and F;, is
the CPU frequency of edge node n.

In summary, the total latency of task k£ execution on node n
can be denoted as:

&)

total __ rpcomm down comp
Tietel = TEom™ + Taqem + TP

C. Problem Formulation and Analysis

Constraints: The containers need to be assigned certain re-
sources to execute the tasks, while the total amount of resources
on the edge node is limited. In instances where the resource limit
of an edge node is surpassed, the functionality of the containers
might be adversely affected. As a result, it becomes crucial to
impose a constraint on the total quantity of resources allocated
by the containers on an edge node. The resource limits on the
edge node can be denoted as:

> nk Xk <Cny Y Y X Mk < My, Vn,
keK keK

(6)

where the binary variable y,, . € {0, 1} indicates whether task
k is executed on edge node n. If y,, , = 1, the task k is executed
on edge node n. Otherwise, the task k is not executed on edge
node n.

Meanwhile, the storage space for the image on an edge node
is limited, which can be defined as:

> wnixd; <D, Vn. )

i€l

Furthermore, like the previous studies [6], [35], [36], tasks
are regarded as inseparable, so each task is scheduled to only
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one edge node, which can be expressed as:

Y ouvk=1 Vk ®)

neN

Problem Formulation: We aim to minimize the average total
latency of the tasks during the edge cluster upgrade. The target
is to find the best policy to minimize the latency while obeying
the constraints. The problem is defined as:

Problem OCS:

min7 = E Tiotal,
keK

s.t. Egs. (6) — (8),
xni € {0,1}, Vn e N, Vi € 1,
Ynk € 10,1}, Vn € N, Vk € K. )

The objective of the OCS problem is to minimize the average
total latency of the tasks during the edge cluster upgrade. In the
OCS problem, x,, ; and v, are variables indicating whether
the image ¢ is at the edge node n and whether the task k is
scheduled to the edge node n, respectively. The OCS problem is
amore complex variant of the bin-packing problem, where tasks
must be scheduled to edge nodes to minimize the total latency.
This problem is NP-hard, so the traditional algorithm may not
get the optimal solution in a reasonable time [37]. Traditional
heuristic algorithms fall short when dealing with the complexity
of the OCS problem, and they cannot find the optimal solution in
linear time. Meta-heuristic algorithms depend on a higher level
of strategy to guide the search for solutions, but they struggle
in the face of the unknown. In essence, as the number of edge
nodes and tasks increases, there is a significant increase in the
time required for these algorithms to find an acceptable solution.

The first-order transition probability of task resource require-
ments is an inherent property that is exploited in the scheduling
problem. It is observed to remain quasi-static over extended
periods, meaning that the state of the system changes is gradual
and predictable over time [38]. Moreover, the arrival of tasks
and the updating of the environment can be modeled as mem-
oryless processes. Therefore, this problem can be modeled as
an MDP [21]. This property simplifies the scheduling problem
by reducing the dimensionality of the information needed for
decision-making. RL is a powerful method that has proven
effective in dealing with MDP problems [39]. Applying RL in
container scheduling can offer significant improvements over
traditional approaches.

IV. ALGORITHMS
A. Algorithm Settings

In this subsection, the settings in the RL algorithm are intro-
duced, including state, action space, and reward.

State: The state s; contains several parties, including node,
task, and location states. Among them, the node state includes
the resource and upgrade states. The resource state includes the
CPU, memory, and storage capacity of the edge node at time ¢,
as well as the CPU frequency and bandwidth of the edge node,
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which can be defined as:
st = {Cu(t), M, (1), Dy (1), F, B}
= {C1(t),Ca(t),...,Cn(t), My(t), Ma(t),. ..,
M (t), D1(t), Da(t), ..., Diny(t),
F\,F,,...,Fin|,B1,Ba, ..., BN}

The upgrade status of the node n at time ¢ is denoted by the
variable p,, (t) € {0,1,2}. p,,(t) = 0 indicates that edge node n
has not been upgraded at time ¢, p,,(t) = 1 indicates that edge
node 7 is being upgraded at time ¢, and p,, (t) = 2 indicates that
edge node n has been upgraded at time ¢. Then, the upgrade state
of nodes can be denoted as:

S?ode,u _ {Pn(t)} = {pl (t),pz(t), C ,p\N\(t)} .

Finally, the state for all edge nodes is defined as follows:

(10)

(1)

S’gode _ S?Ode,r U S;wde,u_

(12)

The task state includes the requested resources and the status
of the images requested to execute the task on each edge node,
which can be denoted as:

task,
St‘ls e {Ck7mk,f}c7dk7Qk}7
task,i =
5" = g tnact = {2100 P20

13)

TN, g P1,q50 L2,0 - - - ’t\N\,qk}a

where t,, ;, is the download time of the image in each edge node
and can be calculated by (3).
Thus, the task state can be denoted as follows:

task _

st task,r U Siask,i.

Sy (14)

The location state s!°¢ is a matrix sized L x W, where L

and W denote the length and width of the selected edge region,
respectively. Within this matrix, the value of the location of the
edge node is 1, the value of the location of the task is 2, and the
value of the other locations is 0.

In summary, the state at time ¢ is defined as:

sp = spode y stask | sloe, (15)

Action space: The container used to execute tasks is scheduled
by the scheduler. The OCS algorithm needs to determine which
edge node to schedule. Therefore, the action space is the set of
all edge nodes as follows:

ar € A={1,2,...,|N}. (16)

Reward: Defining a proper reward is crucial in the RL algo-
rithm. Since different tasks require different computation power,
the completion time of tasks may vary by different orders of
magnitude. Therefore, to improve the stability and effectiveness
of the policy gradient algorithm, both the expected and actual
latencies of the task are included in the reward, which can be
defined as follows:

total

ry =T — T, a7

where T}, = I{:—" represents the expected total latency of the task,

and F,, denotes the minimum value of the edge node CPU
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frequency. If the task is completed earlier than expected, the

reward is positive, with the completion time being inversely

proportional to the reward. Conversely, the reward is smaller.

From a long-term perspective, the cumulative reward is R; =
T ¢ . . . R

> o', where +y is the discount factor with a value ranging

between [0, 1].

B. Online Container Scheduling

Overview: The framework of the OCS algorithm is depicted in
Fig. 3. Specifically, the node, task, and location states can be ob-
served from the environment. After obtaining the features, they
are embedded, concatenated, and fed into the policy network
to make the corresponding scheduling decisions. The reward is
subsequently obtained from the action taken. Finally, the policy
gradient-based algorithm updates the policy network and value
functions. Further specifics of these processes will be described
in the following.

Feature Encoding: Feature encoding mainly comprises three
components: node feature embedding, task feature embedding,
and location feature encoding. Node and task feature embed-
dings are designed to map their respective features onto two
distinctive embedding vectors.

The location feature is a two-dimensional matrix that can
be interpreted as a single-channel image. The Vision Trans-
former (ViT) [40] is an application of the Transformer [41]
architecture to the field of computer vision. ViT can directly
capture the global dependencies between different areas of the
image through the self-attention mechanism [40], which can help
us to obtain the positional relationships between individual
nodes, and between nodes and tasks.

The original location feature necessitates patch embedding.
First, the location feature is segmented into NV pieces of the shape
(p, p, ¢), called “patch”, where p is a predetermined parameter
and c indicates the number of channels. Next, the patches thus
obtained are flattened via a linear layer to condense the dimen-
sions. Subsequently, a trainable position encoding is added to
the final patches.

Following patch embedding is the stage of feature extraction.
The output from patch embedding is used as the initial input
to the stacked transformer encoders for global attention com-
putation and feature extraction. The encoder is composed of
two sublayers. The structure of the first sublayer comprises a
Multi-Head Self-Attention (MSA) sublayer, a Layer Normal-
ization (LN), and a residual connection. This first sublayer can
be represented as:

zy = MSA (LN (z¢-1)) + 21, ¢=1...L, (18)
where z, denotes the features of transformer layers. The MSA
sublayer exists in each encoder, an extension of Self-Attention
(SA). It is crucial to note that ), K, and V are obtained by
multiplying the input z with three different trainable matrices.
The computation of SA can be expressed as follows:

QKT>
va )"

SA(z) = softmax < (19)
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Fig. 3. Overview of the OCS algorithm.

where ey, represents the embedding dimension of K, and the dot-
product is actively scaled by 1/,/€j, to standardize the variance
of @ and K to 1.

MSA is the parallel computation of multiple self-attentions,
termed “heads”. Each head concentrates on a different aspect of
the input and is subsequently concatenated. Using multi-head
allows for a more nuanced extraction of features from differ-
ent heads. Despite the overall computational workload being
equivalent to that of a single head, the multi-head setup yields
superior feature extraction results [41]. MSA can be computed
as follows:

MSA(z) = [SA1(2); SA1(2);. ..

where W denotes a trainable matrix. Following this, the
output from the first sublayer is fed into the second sublayer.
The structure of the second sublayer consists of a Multi-Layer
Perceptron (MLP), an LN, and a residual connection, which can
be represented as follows:

zy = MLP (LN (z})) + z,

SAk(Z)]Wo, (20)

(=1...L 1)

Subsequently, we acquire the location feature encoding and
concatenate it with the node and task feature embedding. We
obtain the encoded feature after reducing the dimensions via a
linear layer.

Training: The OCS algorithm is based on policy optimization.
The policy gradient [42] is an RL algorithm that optimizes the
policy for an expected return. Here, 7y represents a policy with
parameters 6. Supposing J(mp) is the objective function of the
policy gradient, and the gradient of J(my) is:

T

Z Vologmy (as | s¢) A

t=0

VQJ (71'9)

(Staa/t) 5

(22)
where 7 is a trajectory and A™ (5+:9¢) is the advantage function
for the current policy.

While the policy gradient algorithm offers simplicity and effi-
ciency, it can encounter training instability in practical scenarios.

T~7!‘9

This instability often arises due to the indeterminacy of the step
sizes in the policy gradient algorithm, potentially leading to
suboptimal outcomes. The Trust Region Policy Optimization
(TRPO) [43]isintroduced to address this issue. The TRPO offers
improved step size determination and policy updating, and the
loss function can be customized as:

mo(a | s)

ﬁTRPO 9 ’0 _ E
%.9) Tou (@] 5)

s,a~me,

A" (s, a) (23)
The TRPO has been successfully applied to various scenar-
ios, but its computational complexity is substantial. Later, the
Proximal Policy Optimization (PPO) algorithm [44] is proposed,
which maintains effectiveness while significantly reducing com-
putational complexity. Hence, the loss is customized into:

PPO _ o (a | s) o,
L (0k7 9) - 370/‘:E“)7T9k |:<7T9k (CL | S)A (87 a)v
o (Telals) |
clip <7T9k @] S),l €, 1+e) A% (s,a) ]|,

(24)

where clip(x,y, z) = max(min(z, z),y) is a clip function to
limit « to the range of [y, z] and ¢ is a hyperparameter that rep-
resents the range of clips. Besides, PPO adopts the Generalized
Advantage Estimator (GAE) [45] to compute the advantages,
which can be calculated by:

+ ()T 50, (25)

where A is the GAE parameter, §; = r; + 7V (sp41) — V(s¢) is
the TD-error at time ¢. V' is an approximate value function.
The OCS algorithm is presented in Algorithm 1. In each
time slot, if ToT devices offload tasks to the edge cluster,
their scheduled nodes need to be determined. Moreover, if an
edge node starts upgrading in a certain time slot, the nodes
for rescheduling all containers on that node also need to be
determined sequentially. The replay memory D is first initialized
for each episode. As shown in Lines 3 - 15, for each time slot ¢,

At:5t+(»y)h)5t+1+...+...
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Algorithm 1: The OCS Algorithm.

Input: Initial policy parameters ¢, initial value
function parameters ¢, clipping threshold e
Output: a;
1 for episode <— 0,1,2,... do

2 | Initialize replay memory D = () ;

3 for time slot < 0,1,2,... do

4 Get the current state s; ;

5 Initialize the filtered set A’ = (;

6 for edge node n < 1,2,3,... do

7 if p,,(t) = 1 or the resources of the node are

insufficient then
8 Add the node to the filtered set:
A~ Au{n}

9 end if

10 end for

11 Select action a; from A \ A’ according to

mo(az | s¢) ;

12 Execute action a; and obtain the reward r; ;
13 Get the next state s¢y1 ;

14 Store transition (s¢, at, 7t, St+1) in D;
15 end for
16 Compute the cumulative reward:

T
Ri=3%0 vre;
17 | Compute the value function Vj(s;) for each state

Sts

18 for training step < 0,1,2,... do

19 Compute the policy ratio p.(6) = % ;

20 Estimate advantages A, by Eq. (25) ;

21 Compute and update the policy update by
Eq. (24);

22 Compute the value function loss ues MSE
function: L, (¢) = %Hng(st) — Ry||%

23 Update the value function parameters:
Pry1 < b

2 end for

25 _end for

the observation state s; of the current time slot ¢ is first obtained,
then the action a, is selected according to the policy, and the
reward r; is calculated. In addition, nodes that do not meet
the scheduling requirements need to be filtered when selecting
actions, e.g., upgrading or resources are insufficient. Afterward,
the next state sy is obtained. Finally, the transition is stored
in the replay memory D. As shown in Lines 18-25, for each
training step k, the advantage estimation Ay, is first computed
based on the collected set of trajectories. Then, the stochastic
gradient ascent algorithm with Adam [46] is used to maximize
the objective function to update the policy. Finally, the results
are output after all episodes are completed.

C. Computational Complexity Analysis

The OCS algorithm can be primarily divided into four parts:
state observation, action selection, reward computation, and
network update. The computational complexity of each part is
analyzed in the following.
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First, the state is shown in (15), and the complexity of this part
can be calculated to be O(|N||I|), where |N| and |I| represent
the number of nodes and images, respectively. Second, action
selection involves sequentially traversing all nodes. Therefore,
action selection is a loop whose complexity can be represented
as O(|N|). Following this is the reward calculation. The reward
is calculated according to (17). The complexity of the reward
calculation does not change with the number of nodes or tasks,
so its complexity can be represented as O(1). The node and task
information is mapped through fully connected layers. Let there
be L; number of hidden layers with G neurons per layer. The
complexity of this part can be calculated to be O(|N||I| x G +
Ly x G?) [47].

As for the ViT, it includes several parts, of which the MSA
operation has the highest computational complexity. Let D be
the embedding dimension and N be the number of patches.
The computational complexity of the MSA can be calculated
as O(N2D + N D?) [40], [48]. Here, the first term corresponds
to the computation of self-attention, i.e., the calculation of
the query, key, and value, and the second term corresponds
to concatenating the outputs of the MSA. Assuming that the
ViT contains L, layers, the complexity can be calculated as
O(Ls x (N2D + ND2)).

For other parts, such as adding residual connections, perform-
ing layer normalization operations, and computing activation
functions, their impact is generally much less than the parts
mentioned above, so the computational complexity of these
operations can be negligible. Hence, the total complexity is
O(IN|I| x G+ Ly x G% + Ly x (N?D + ND?)).

V. EVALUATION

A. Experimental Settings

Parameter Settings. Similar to [32], [49], we set the transmis-
sion power p = 23 dBm and the noise power spectrum density
0 = —174dBm/Hz. According to the physical interference
model [50], the channel gain between the IoT device and the
edge node h, j, is d;f}fy where d,, ;, is the distance between
the IoT device and the edge node and « is the path loss factor.
The communication bandwidth between the IoT device and the
edge node is [100, 200] Mbps.

The area of the selected edge regionis L x W, where L and W
are the length and width of the selected edge region, respectively.
The area of the selected edge region increases as the number of
edge nodes increases, and the default areais 100 m x 100 m. All
edge nodes are heterogeneous and randomly distributed, and the
default number of edge nodes is 15. The CPU capacity of the
edge node is set between [80,120] cores. The CPU frequency
is set between [15,35] GHz, and the memory is set between
[70,130] GB. The task is randomly generated in the selected
edge region, and the task sizes are set from 10 KB to 10 MB.
The types of requested images adhere to a normal distribution.
If the requested image is not present on the assigned edge
node, it must be downloaded from a remote repository, with
the image size ranging from 300 MB to 1.5 GB. Initially, a
specific number of tasks are carried out on each edge node, and
the images corresponding to these tasks are also available on
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TABLE III
HYPERPARAMETER SETTINGS

Type Hyperparameter Value

Actor  Hidden layers 2 Full connection (128,64)
Learning rate le-4

Critic  Hidden layers 2 Full connection (128,64)
Learning rate 3e-4
Loss Function MSELoss

ViT Input dimension LxW
Hidden dimension 768
Output dimension 10

Other  Discount factor 0.98
GAE parameter A 0.95

Clipping threshold e 0.2

Batch size 32
Activation function ReLU
Optimizer Adam

the edge nodes. The neural network input is scaled to the same
order of magnitude. The hyperparameters of the OCS algorithm
are listed in Table III.

In addition to simulated data, real-world data traces are also
used to increase the credibility of our experiment. The task data
comes from the Alibaba Cluster Trace [51], which is collected
from a large production cluster. After deleting missing values,
filtering unreasonable values, and other preprocessing, 156,456
tasks are retained. The average CPU and memory of the task are
3.93 cores and 4.21 GB, respectively, and the arrival times of
the tasks are randomly generated. The container data is crawled
from DockerHub [52], including 155 of the most commonly used
images, with image sizes ranging from 1.84 MB to 2.03 GB.

Baselines. We compare the OCS algorithm with several base-
line algorithms to demonstrate the effectiveness of our proposed
algorithm:

1) EQ (EqualPriority): This algorithm sets the weight of all
nodes to 1, treating them as equal in priority for scheduling
tasks. It does not consider any specific features of the
nodes, such as resource availability or image locality.

2) LA (LeastAllocated): This is a scheduling policy related
to the resource usage of the node. It selects the node with
the least allocated resources for scheduling tasks, ensuring
that nodes with more available resources are prioritized for
new tasks.

3) RO (RO-min) [24]: This is a heuristic approach that per-
forms migration and minimizes overall network resource
occupation and optimizes online virtual machine migra-
tion for disaster resilience.

4) RV (Revan) [25]: This is an RL-based scheduler designed
to minimize the total migration time of virtual machines
during datacenter upgrades by adaptively choosing the
best destination physical machine for each virtual machine
migration.

5) DRL [16]: DRL algorithm is the PPO algorithm based
on the actor-critic framework and contains no location
information.

Among them, (1)—(2) are built-in scheduling policies in Ku-
bernetes [12]. Moreover, LA is a greedy algorithm that selects
nodes with more resources. By comparing the OCS algorithm
with these baselines, we can demonstrate the advantages of our
proposed algorithm in terms of minimizing total task latency.
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B. Experimental Results

To validate the effectiveness of the OCS algorithm, a series
of experiments are performed comparing its task latency perfor-
mance against several baseline algorithms under varying condi-
tions. Subsequently, the training process of the OCS algorithm
is evaluated in detail.

Performance With Different Numbers of Nodes. Fig. 4 shows
the average task latency obtained through various container
scheduling algorithms as the number of nodes increases, in-
cluding communication latency, download latency, computation
latency, and total latency. The average task latency decreases
with an increasing number of nodes across all algorithms be-
cause more nodes provide more scheduling options, allowing
containers to be allocated to more suitable nodes, like those
closer or with more resources, thereby reducing the average total
task latency.

Specifically, Fig. 4(a) illustrates the communication latency
of tasks. As shown in the figure, the communication latency of
tasks from various container scheduling algorithms decreases as
the number of nodes increases due to more scheduling options
that favor closer nodes or those with higher network bandwidth.
Unquestionably, the OCS algorithm, which considers location
information, outperforms the others, decreasing communication
latency by approximately 50% compared to the least efficient EQ
algorithm.

Fig. 4(b) illustrates the download latency. The disparity in
download latency among different algorithms is more significant
than the variations observed in other latencies. As inferred from
this figure, the RO scheduling algorithm significantly reduces
download latency compared to other algorithms. This is because
the RO algorithm accounts for the size of the image to be
downloaded. Moreover, the download latencies for the DRL and
OCS algorithms are less than the LA, RV, and EQ algorithms.

Fig. 4(c) depicts the computation latency. The disparity in
computation latency among different algorithms is less pro-
nounced than download and communication latencies. This
is because containers executing distinct tasks operate inde-
pendently on the node, precluding interference among tasks.
The OCS algorithm continues to deliver superior performance,
whereas the EQ and RO algorithms, which disregard the actual
resources of the nodes, perform poorly.

Fig. 4(d) presents the total latency of tasks. In our experiments,
the OCS algorithm consistently outperformed regardless of the
number of nodes in the environment. In summary, as the number
of nodes increases, the total latency sorting is OCS < DRL <
RO < RV < LA < EQ. More specifically, the average total
latency for varying numbers of nodes reduces by 45%, 35%,
22%, 30%, and 6% when compared to the EQ, LA, RO, RV,
and DRL algorithms, respectively. Hence, the OCS algorithm
demonstrates superior performance, irrespective of the number
of nodes.

Performance With Different Numbers of Tasks. The variation
of average task latency as the number of tasks increases is
illustrated in Fig. 5. We analyze and present the variation in com-
munication latency, download latency, and computation latency
for different numbers of tasks in Fig. 5(a)—(c). In these figures, as
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the number of tasks increases, the influence of download latency
gradually becomes dominant, emerging as the primary factor
affecting the overall task latency. In contrast, the changes in
communication latency and computation latency are relatively
minor. This occurs because as the number of tasks increases,
there is a greater demand for different types of images. Hence,
in the design of the container scheduling algorithm, particular
attention should be given to optimizing download latency to
enhance the efficiency and performance of task scheduling.
Additionally, The OCS algorithm has the lowest communication
and computation latency, while the RO algorithm has the lowest
download latency.

As illustrated in Fig. 5(d), the total latency of the task is
determined by considering the above latency in concert. As
the number of tasks increases, the relative performance among
different algorithms, in terms of total latency, follows the se-
quence: OCS < DRL < RO < LA < RV < EQ. In particular,
in comparison to the DRL, RV, RO, LA, and EQ algorithms, the
OCS algorithm reduces total scheduling latency by 5%, 41%,
19%, 39%, and 46%, respectively.

Performance With Different Bandwidth. 1t can be seen from
Fig. 6 that the total latency decreases as the bandwidth increases.

The main reason for this reduction is the decrease in download
latency, which is directly influenced by bandwidth. As band-
width increases, the time required to download the container
images is significantly reduced, thereby decreasing total latency.
Overall, OCS outperforms all other algorithms in minimizing
total task latency. In particular, OCS reduces total task latency
by approximately 30% compared to the baseline algorithms.

Performance With Different CPU Frequency. Fig. 7 shows
the total latency of different algorithms with the CPU frequency
change. The results indicate a decrease in total task latency as
the CPU frequency increases. This decrease can be attributed
to the accelerated task execution resulting from the increased
CPU frequency. Our OCS algorithm can maintain the best
performance when the edge node CPU frequency changes.

Performance With Real-World Data Traces. This experiment
is completely based on real-world data traces. We separately
calculate the total latency of various algorithms with changes
in the number of nodes, the number of tasks, bandwidth, and
CPU frequency, as shown in Fig. 8. As can be seen from the
figure, when using real-world data traces, the total task latency
obtained by container scheduling through the OCS algorithm is
relatively low.
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Fig. 8(a) illustrates the change in total task latency as the
number of nodes increases. The results of all algorithms are
similar when the number of nodes is small. As the number of
nodes increases, the gap between the OCS algorithm and the
baselines gradually widens. The reason is that as the number
of schedulable nodes increases, the baseline algorithm may be
unable to make optimal scheduling decisions. Fig. 8(b) shows the
change in total task latency as the number of tasks increases. As
the OCS algorithm can schedule tasks requesting the same image
to the same node, it does not lead to a significant increase in total
latency. Fig. 8(c) and (d) represent the change in total task latency
with the variation in bandwidth and CPU frequency, respectively.
As node resources increase, any scheduling policy will result in
a decrease in total task latency. However, the OCS algorithm
almost consistently outperforms the baseline algorithm.

In summary, the OCS algorithm delivers the lowest total
latency under different conditions and outperforms other algo-
rithms. Specifically, the OCS algorithm reduces the total latency
than EQ, LA, RO, RV, and DRL algorithms by 39%, 29%, 32%,
27%, and 5% on average, respectively. These results demonstrate
that our proposed algorithm can perform well in real production
clusters.

Statistical analysis: Table IV shows the statistical results of
the paired t-test that determine the significance level of the
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TABLE IV
STATISTICAL COMPARISON OF THE OSC ALGORITHM WITH OTHER BASELINES

Metrics EQ LA RO RV DRL
Mean 14.23 13.56 12.52 12.50 11.27
SD 1.01 091 1.07 0.84 0.69
T-statistic -8.59 -7.51 -4.40 -5.21 -2.25
P-value 1.79x10=%  7.08x1076  8.61x10~* 218x10~* 0.043

proposed algorithm compared with other algorithms regarding
total latency. Specifically, the table provides the mean and stan-
dard deviation (SD) of the baseline algorithms, alongside the
t-statistic and corresponding p-value. Our null hypothesis is:
“There is no significant difference in the performance between
the OCS algorithm and the baseline algorithm”. [53] The table
shows a meaningful difference between the OCS algorithm and
baselines, while the p-value is lower than 0.05 in all cases. There
is statistically significant evidence at the 5% significance level
to suggest that the proposed container scheduling algorithm
performs better than the baseline algorithm. Thus, the null
hypothesis is rejected, which proves the fact that differences
are significant.

Convergence of the OCS algorithm: Fig. 9 shows the training
process of the OCS algorithm. As the training steps increase,
both the policy network loss and value function loss decrease
rapidly and eventually fluctuate near a specific value, indicating
that the algorithm has converged. Fig. 9(a) illustrates the policy
network loss. The change initially decreases and then increases,
mainly because the policy network outputs relatively random
policies in the early training phase, but with continued training,
it learns more rational policies and stabilizes around a specific
value.

Fig. 9(b) depicts the fluctuation of the value function loss.
During the initial stages, the difference between the predicted
and true values of the value function network is significant,
resulting in a high-value function loss. However, after the 100-th
episode, the value function network learns a more accurate value,
resulting in a rapid decrease and subsequent stabilization of
the loss. Fig. 9(c) illustrates the reward, indicating an initial
sharp increase followed by a plateau. The algorithm identifies a
promising policy and fine-tunes the policy network and value
function. Occasional declines in reward during training may
be due to the exploration of novel environments, making the
current policy ineffective, but the algorithm quickly recalibrates,
restoring normal function over time. Overall, the convergence
rate of the OCS algorithm is remarkably rapid, suggesting its
ability to learn optimal policies within a brief timeframe.
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Fig. 9. Policy network Loss, value function Loss, and reward of the OCS algorithm.
1.0 acceptable limits, demonstrating that our algorithm has low
complexity and can be run in real-time. Furthermore, it can
0.8 be clearly discerned that the execution time does not increase
' significantly with the number of tasks.
5 0.6 — E
S o LS VI. DISCUSSION
0.4 RO A. Feasibility of Deployment
RV
DRL In this section, we discuss the feasibility of deploying the OCS
0.2 - ocS algorithm in Kubernetes cluster. A Kubernetes cluster generally
comprises one master node and multiple worker nodes. The mas-
10 20Comp|2t(i)on Ti mto >0 ter node, usually equipped with superior processing capabilities,
is responsible for managing the overall cluster. Meanwhile, the
Fig. 10. CDF of total latency. worker nodes are responsible for executing the tasks.
We can implement the OCS algorithm through the scheduling
TABLE V framework of Kubernetes. First, we need to program the OCS
COMPUTATION RESOURCES OF DIFFERENT ALGORITHMS scheduler using the Go programming language. Next, we should
Algorithm  Tasks AN VRAM Fccuton Time Package the sche(.iuler files into a contaln'er image and push the

EQ 1000 z = 0.92ms image to a repository to ensure the consistency of the custom

LA 1000 - - 1.24ms scheduler in different environments. Then, we should define a
RO 1000 - - 4.01ms ; ;

RV 1000 | 31550kb  787.23Kb 1 9%me Deployment for the scheduler, which determme§ how the OCS
DRL 1000 | 588.04Kb  630.00Kb 3.78ms scheduler runs in the edge cluster. When deploying the custom
0cCs 1000 | 1177.60Kb  1259.52Kb 17.93ms scheduler, it is necessary to write related Kubernetes configura-
OCSs 2000 | 1064.00Kb  1265.00Kb 19.40ms ; feQi

tion files, and set the correct resource quotas, permissions, and
0Cs 3000 | 1373.45Kb  1567.01Kb 20.98ms Lo . . d P X
oCs 5000 | 2644.99Kb  2922.50Kb 21.27ms environment variable configurations. Finally, we should deploy

CDF of total latency: Fig. 10 presents the Cumulative Dis-
tribution Function (CDF) of total latency. The OCS algorithm
shows a higher proportion of tasks with shorter total latency
when compared to other algorithms. These results enhance the
potential of our OCS algorithm as a promising solution for
container scheduling in edge cluster upgrades.

Computation Resources for Different Algorithms. As shown
in Table V, we use torch.profiler [54] to record the Random
Access Memory (RAM), Video RAM (VRAM), and execution
time for different algorithms. EQ and LA algorithms require
the shortest execution time because they are simple judgments
and comparisons. The introduction of the ViT network improves
the performance of the OSC algorithm, although the cost is to
increase the execution time. However, the computation resources
and execution time required by the OCS algorithms are within

the OCS algorithm in the master node and install Prometheus for
monitoring. This setup allows the algorithm to receive various
information (e.g., remaining resources, image locality) collected
by Prometheus from each worker node. The algorithm makes
scheduling decisions by processing this aggregated data and
utilizes the Kubernetes API to schedule tasks.

Our proposed OCS algorithm is based on RL. Due to the large
amount of coding work required to achieve interaction between
RL and Kubernetes, we are currently striving to develop rele-
vant code. However, additional effort is still needed to achieve
comprehensive integration between RL and Kubernetes, which
will be the focus of our future work.

B. Feasibility of Real-Time Running

In this section, we discuss the feasibility of real time running
of the OCS algorithm.
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The OCS algorithm is an online algorithm. This design con-
siders the dynamics and unpredictability of the tasks generated
by IoT devices. The algorithm continuously receives and pro-
cesses data, making real-time decisions without batch process-
ing or waiting for a complete dataset. To ensure the efficiency
and accuracy of our algorithm in real-time scenarios, we can
first train our model using historical data. Using historical data
in training enables it to handle various scenarios and variations in
task generation. Once trained, the algorithm utilizes the learned
model parameters to schedule in actual environments. The online
nature of our algorithm, combined with its initial training phase,
ensures that it can handle the randomness of tasks generated by
IoT devices well. This algorithm ensures performance even in
highly dynamic and unpredictable environments, as the algo-
rithm constantly interacts with the environment.

For the real-time performance of the algorithm, please refer
Table V. The average task arrival time in the Alibaba Cluster
Trace [51] is approximately 581 ms, much longer than the time
required to execute our algorithm. It reinforces our position that
the interval between arriving tasks is greater than the execution
time of the algorithm. Moreover, the number of tasks running
concurrently is limited due to the resource capacity of the data
center. Therefore, the proposed algorithm can run in real-time.

VII. CONCLUSION

This article proposes a latency-aware container scheduling
algorithm for IoT services in edge cluster upgrades. First, we
comprehensively model the OCS problem, considering commu-
nication, download, and computation latency. Second, a location
feature extraction method based on ViT has been proposed,
utilizing the distribution information of edge nodes. Then, a
policy gradient-based RL algorithm is proposed to make on-
line scheduling decisions, which fully considers the distinctive
features of MEC. Finally, experiments are conducted on the
simulated edge cluster, and the experimental results demon-
strate that our algorithm achieves approximately 30% lower
total latency than the baseline algorithm. The RL algorithm
employed in our study, while effective in decision-making,
requires extensive historical data to train the neural network. The
algorithm may perform poorly in practical applications without
insufficient training data. Besides, our validation relies mainly
on simulations and real-world data traces, but more complex and
variable factors in real environments may affect the performance
of the algorithm. In future work, we will further consider the
impact of real-time decision-making on algorithm performance
and deploy this algorithm in the Kubernetes cluster.
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