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Spatiotemporal Mobile CrowdSourcing (MCS) is a new intelligent sensing paradigm for large-scale data

acquisition where requesters can recruit a crowd of workers to perform data collection tasks. How to recruit

suitable workers in a dynamic environment to maximize platform utility is a key issue and has become a

research hotspot. Many past studies have made great efforts in this regard, but most of them either assume

that the worker quality is known in advance or ignore the limitations of workers’ short-term ability to

provide resources. In this article, we consider a platform-centered online spatiotemporal MCS system where

mobile workers have both long-term and short-term constraints for providing resources, and their quality

is unknown to the platform, while the platform has a long-term budget constraint for recruiting workers.

We aim to find an online worker scheduling scheme to maximize the platform’s long-term utility without

violating the constraints of both workers and the platform. To address this problem, we first transform the

long-term utility maximization problem into a real-time utility maximization problem by leveraging the
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Lyapunov optimization, then design algorithms based on the Upper Confidence Bound (UCB) and Markov

approximation to solve each real-time utility maximization problem with unknown worker quality. We

demonstrate that our UCB-based algorithm has a sublinear regret and prove that our proposed framework

has a performance guarantee for the addressed problem. Finally, we evaluate our design through numerical

simulation experiments, and the results demonstrate the effectiveness of our algorithm.

CCS Concepts: • Networks→ Network algorithms; Network economics; Mobile networks;

Additional Key Words and Phrases: Mobile crowdsourcing, unknown worker scheduling, sensing quality,

recruitment cost minimization, and profit maximization
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1 Introduction

Smart devices and sensor networks are widely deployed in modern society. These deployments
span a variety of application scenarios, including smart manufacturing, smart cities, and energy
efficiency optimization [10, 16, 19, 37]. Notably, these applications often generate many sensing
tasks requiring real-time and efficient processing under limited resources. To meet these stringent
demands, spatiotemporal Mobile Crowdsourcing (MCS) has emerged as a viable solution, in
which a crowd of workers is scheduled to complete sensing tasks with their smart devices when
they visit some pre-designated places [17, 35, 39].

In a typical spatiotemporal MCS system, the platform publishes tasks online [32], then sched-
ules appropriate mobile workers to perform the corresponding tasks, and specifies the amount
of resources the workers need to provide. The utility achieved by the platform is related to the
workers’ quality of task execution and the amount of resources provided by workers. However,
due to the differences in sensing devices and behaviors among workers, the sensing qualities vary
for workers, even when performing the same task. In addition, it is not feasible for workers to
evaluate their own quality, because it is impossible to judge the evaluation criteria and honesty of
the workers. Therefore, the quality of workers is often unknown to the platform, and how to effi-
ciently schedule workers with unknown quality is crucial to improving the utility of the platform.
There are lots of works focusing on the worker scheduling problem, but most of them assume that
the quality of workers is known in advance [11, 18, 21], which is unrealistic in many practical
scenarios [14, 31]. Although few works have also focused on the problem of worker scheduling
with unknown quality [8, 15, 30, 41, 46], they only consider the case that tasks are homogeneous,
which is not suitable for the general scenario.

Generally, both the worker’s resources for task execution and the platform’s budget to pay for
the workers are limited in the long term. For instance, in smart cities, workers equipped with
mobile devices are recruited to report real-time traffic conditions. However, their resources are
limited in the long run, such as the limited battery power of the carried devices or the limited time
that workers can perform tasks. For the smart city platform, the long-term budget for recruiting
workers is also limited. In addition to long-term constraints, workers also have certain short-term
constraints when performing tasks. For example, due to equipment limitations, the amount of
resources workers can provide in the short term is very constrained, and they can only perform
a small number of tasks. Therefore, maximizing the long-term utility of the platform under short-
term and long-term constraints on resources and budgets is a pressing issue. Current research
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on maximizing platform utility mainly focuses on satisfying long-term constraints while ignoring
workers’ short-term resource provision capacity constraints [2, 6, 12, 26].

In this article, we investigate the online worker scheduling problem to maximize the platform’s
long-term utility for the spatiotemporal MCS system with unknown worker quality, where we
consider both long-term and short-term constraints of workers’ resource provision capacity, as
well as the long-term constraint of the platform’s budget. As the quality of workers is unknown for
the platform, an intuitive approach is to let the platform schedule workers to perform some tasks in
the initial rounds and evaluate their quality, which can be called “exploration.” Then, the platform
could schedule workers with higher qualities based on the learned quality information to achieve
greater utility, which can be called “exploitation.” Our objective is to design an online worker
scheduling scheme to maximize the platform’s long-term utility under long-term and short-term
constraints of workers’ resource provision capacity while ensuring that the platform’s long-term
budget constraint is not exceeded.

There are three main challenges in achieving this goal. First, too much exploration will waste
the platform budget to a certain extent, while too little exploration will lead to an inaccurate es-
timation of workers’ quality; therefore, determining a better trade-off between exploration and
exploitation phases has a significant impact on maximizing the utility of the platform. Second, as
both workers and the platform have long-term constraints, how to allocate the amount of resources
and budget to each time slot is a very crucial issue as it is almost impossible for us to get complete
future information about tasks. Third, as each worker has a short-term resource constraint, how
to assign tasks to corresponding workers to maximize the total utility is very tough as it falls into
the category of the multi-knapsack problem.

To address the challenges mentioned above, we model the worker scheduling problem with
unknown quality as a Multi-Armed Bandit (MAB) problem to tackle the trade-off between ex-
ploration and exploitation. Each worker can be regarded as an arm of MAB, and the reward is set
to the quality of the corresponding worker. The entire worker scheduling process is formulated as
a combinatorial arm-pulling process. To address the arm-pulling problem, we use the pre-defined
Upper Confidence Bound (UCB) index to greedily select the arms to be pulled, and the index
is continuously updated during the worker scheduling process. For the long-term constraints of
the worker’s resources and the platform’s budget, we apply Lyapunov optimization techniques
to transform the long-term constraints into real-time constraints, converting the original prob-
lem into a queue stability control problem. On this basis, we incorporate workers’ short-term en-
durance as a short-term constraint on worker resources into the problem. We employ the Markov
approximation to solve the queue stability control problem. Based on the Markov approximation
and UCB, we propose the scheduling algorithm for workers with unknown quality.

This work is a journal extension to our previous conference paper [34]. Compared to Reference
[34], we have significantly revised and clarified the paper, and improved many technique details.
The primary improvements can be summarized as follows. First, we further consider the situation
in that worker’s quality is unknown (Section 3). To address the challenges posed by the newly
formulated problem, we propose a novel worker scheduling algorithm with unknown quality (i.e.,
Algorithm 3). Additionally, we prove the performance upper bound of the proposed algorithm and
conducted regret analysis on the results of learning workers’ task completion quality (Section 5).
Finally, we thoroughly re-implement the simulations to verify our designs (Section 6). The contri-
butions of our work are summarized as follows:

— We investigate the online worker scheduling problem with unknown worker quality for the
spatiotemporal MCS system. Different from existing studies that only consider long-term
constraints, we also consider short-term constraints of workers’ resource provision capacity,
which is a relatively underexplored topic.
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— We transform the online worker scheduling problem into a real-time problem by leveraging
the Lyapunov optimization and then solve the real-time problem by combining the Markov
approximation algorithm and the UCB algorithm.

— We prove that our UCB-based algorithm has a limited regret, and our proposed framework
has a performance guarantee for the addressed problem.

— We conduct extensive simulations to validate the performance of our designs, and the results
show the effectiveness of our algorithms.

The remainder of this article is structured as follows: Section 2 reviews the related works of
worker scheduling. Section 3 introduces the system model and problem formulation. Section 4
introduces the proposed online worker scheduling framework. Section 5 analyzes the performance
of our algorithms. Section 6 presents the simulations. At last, Section 7 concludes this article.

2 Related Works

In this section, we briefly review the research efforts on worker scheduling with unknown quality
and online worker scheduling with long-term constraints.

2.1 Worker Scheduling with Unknown Quality

MAB is an effective reinforcement learning model for making online decisions in unknown in-
formation environments. In recent years, the application of MAB in scheduling workers with un-
known task completion quality in spatiotemporal MCS systems has been widely studied [13, 15, 27].
For instance, Li et al. [14] study the worker recruitment problem under the uncertainty of work-
ers dynamically joining and leaving, and propose a context-aware online CMAB-based incentive
mechanism. Gao et al. [8] model the worker recruitment process with unknown task completion
quality as a CMAB problem, aiming to develop a recruitment strategy that maximizes the total
weighted task completion quality under a limited budget, in which hey also consider the case that
the worker recruitment costs are unknown. To address the problem, they propose an unknown-
worker recruitment algorithm based on the modified UCB algorithm. Wang et al. [33] study the
heterogeneous worker recruitment problem by considering both worker ability and subjective
collaboration. They propose a CMAB-based multi-round user recruitment strategy under budget
constraints and use a graph theory-based algorithm to improve the issue of requiring a fixed num-
ber of workers in each round of recruitment. Xiao et al. [41] design a joint optimization method
for platform utility and task completion quality for the task allocation problem with unknown
task completion quality. Zhang et al. [45] study the worker recruitment problem with unknown
worker quality in the context of edge computing and spatiotemporal MCS systems, and propose
a CMAB-based user recruitment algorithm for the problem. Peng et al. [25] study the task allo-
cation problem where there are multiple service platforms and the worker quality is unknown.
They propose a multi-platform collaborative task allocation mechanism based on MAB. Fu et al.
[7] study the situation where both worker quality and the task publisher’s payment are unknown.
They propose a truthful and dual-directional CMAB scheme, in which they utilize the UCB algo-
rithm to maximize the total profit for both the workers and the task publishers. However, most of
these works assume that the tasks performed by workers are homogeneous, without considering
the heterogeneity of tasks in spatiotemporal MCS systems.

2.2 Online Worker Scheduling with Long-term Constraints

In online scheduling scenarios, tasks usually arrive dynamically over time. If future task infor-
mation can be obtained, then the budget or resource allocation strategy can be adjusted in time
to achieve the optimal goal. However, it is basically impossible to obtain future information.
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In recent years, many works have focused on the online worker scheduling problem with
long-term constraints. Yang et al. [44] utilize the fuzzy time-series analysis method to predict
the number of participants available for each task in a specific time and space. Then, according
to the predicted results and comprehensively considering various attributes of the participants,
they design an online task allocation algorithm based on the improved genetic algorithm. Peng
et al. [24] study the online task allocation problem of maximizing the total profit of the mobile
crowdsensing platform while meeting the time window requirements of each task. Due to the
influence of the task assignment time point, there may be a reduction in task completion rates and
budget utilization. To address this issue, Ding et al. [5] propose a dynamic delayed-decision task
assignment method, which first considers the task assignment time point and introduces a model
for assigning multiple tasks under spatiotemporal constraints. Then, they propose two mobility
prediction methods to efficiently compute the probabilities of users reaching the task destinations.
Additionally, some research has focused on developing task allocation strategies by establishing
appropriate incentive mechanisms. Gao et al. [9] focus on UAV-assisted MCS scenarios and
propose a UAV-assisted multi-task allocation method to optimize sensing coverage and data
quality. The authors aim to incentivize participants to contribute sensing data from nearby points
of interest within a limited budget, in which they jointly consider optimizing task assignment and
trajectory scheduling. Xu et al. [42] integrate the graph attention networks (GAT) with deep

reinforcement learning (DRL), and develop a GAT-based DRL method to address the NP-hard
task allocation problem. Compared to traditional heuristic methods, their approach leverages the
flexibility and adaptability of DRL. In addition to the above research, some scholars have also
used Lyapunov optimization technology to balance the long-term stability and platform utility of
the spatiotemporal MCS system [20, 29, 36], which is similar to our work. However, they do not
fully consider the short-term resource provision capacity constraints of workers and, therefore,
cannot solve the online worker scheduling problem explored in this article.

2.3 Comparison Analysis

Table 1 summarizes the difference between our work and the representative work. To sum up,
existing works often overlook the heterogeneity of tasks in spatiotemporal MCS systems when
considering the unknown worker quality [7, 14, 15, 33, 45], and the studies on online worker
scheduling problem usually only consider long-term constraints of workers or platform [20, 38, 40].
In our work, we consider the heterogeneity of tasks, that is, different tasks bring different utilities,
even if the same amount of resources are invested. In addition, we also comprehensively consider
the long-term constraints of workers and platforms, as well as the short-term resource provision
capacity constraints of workers, which makes our work more in line with the actual situation
of spatiotemporal MCS systems. This is also the fundamental difference between our work and
previous studies.

3 System Model and Problem Formulation

3.1 System Model

In this section, we first introduce the spatiotemporal MCS system model with unknown worker
quality, then formulate the problem to be addressed. The main symbols we use are listed in Table 2.

As shown in Figure 1, we consider a stable spatiotemporal MCS system that contains a fixed
number ofm mobile workers with unknown quality denoted byW = {w1,w2, . . . ,wm}. The MCS
platform will periodically publish tasks to workers. To conveniently represent the periodicity of
system release tasks, we assume the MCS system works in a slotted model, and the timeline is
divided T time slots, i .e ., T = {1, 2, . . . ,T }. At the beginning of each time slot t ∈ T , there is a
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Table 1. Comparison of Our Work and the Representative Related Work

Work
Unknown worker

quality
Heterogeneity

of tasks
Long-term
constraints

Short-term resource
provision capacity

constraints of workers

[14, 41] � × � ×

[15] � × × �
[2] × × � ×

[33, 43] � × × �
[25] × � × �
Ours � � � �

Table 2. Symbol Definitions

Symbol Definition

T Time slots set
W Workers set
At Tasks set in time slot t
Rt Worker resource allocation matrix in time slot t

Bi Long-term time-average resource budget of worker wi

bmax
i Resource budget of worker wi in a single time slot
τ Unit resource price of workers
qi Expected task execution quality of wi

qt
i Task completion quality of wi in time slot t

q̃t
i Learned quality for wi until time slot t

ηt
i Uncertainty measure of wi in time slot t

rmin
j,t Minimal resource requirement of task aj in time slot t

Cbдt Long-term time-average recruitment budget of the platform

set Nt of tasks published by the platform, which is denoted byAt = {a1,a2, . . . ,aNt
}. We assume

that there are more tasks than workers in each time slot, and each task is indivisible and thus can
be executed by at most one worker, while one worker may perform multiple tasks within his/her
capability.

For any worker wi ∈ W, there is a long-term time-average resource budget Bi , which means
that the average amount of resources invested by worker wi in executing tasks in each time slot

cannot exceed Bi . In addition, considering the capability of each worker to perform tasks is limited,
we assume the resource budget of the worker wi ∈ W is bmax

i in a single time slot. For any task

aj ∈ At , there is a minimal resource requirement rmin
j,t (where rmin

j,t ≥ 1), which means that the

task can only be executed if the amount of resources allocated to it is more than rmin
j,t . We use

a M × Nt allocation matrix Rt to represent the worker scheduling strategy in time slot t , where
each element Rt

i j denotes the amount of resources that worker wi allocates to task aj , and Rt
i j = 0

indicates that the worker wi does not perform the task aj in time slot t .
We assume that each workerwi has an expected task execution quality qi , which is unknown to

the platform, and the worker himself cannot accurately judge the quality of his task execution. Let
qt

i ∈ [0, 1] represent the task completion quality of worker wi in time slot t , which can be judged
by the platform afterwi performs tasks. Note that qt

i may vary in different time slots, but it follows
an unknown distribution with the expected task execution quality qi . The variability of qt

i comes
from many factors, for example, the willingness of workers to perform tasks in different time slots
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Fig. 1. The architecture of spatiotemporal MCS system.

may be different, or changes in environmental information in different time slots may also lead to
changes in the quality of workers’ task execution.

Let P t
i j denote the profit obtained by the platform from worker wi performing task aj in time

slot t . With the above models and assumptions, we can calculate P t
i j as follows:

P t
i j =

{
α j log (1 + βjq

t
iR

t
i j ), Rt

i j ≥ rmin
j,t ,

0, Rt
i j < rmin

j,t .
(1)

Assume that the unit resource price of workers is identical and is denoted as τ , then the cost of
the platform for purchasing worker wi ’s resources in time slot t is denoted by

Ct
i = τ ·

∑
aj ∈At

Rt
i j . (2)

The long-term time-average recruitment cost of the platform is limited on the entire timeline and

is represented by Cbдt .

3.2 Constraints of Our Problem

Allocation decision constraint: As each task can be executed by at most one worker, the follow-
ing constraint must be satisfied:∑

wi ∈W
I{Rt

i j > 0} ≤ 1, ∀aj ∈ At , t ∈ T , (3)

where I{Rt
i j > 0} is the indicator function.

Worker resource consumption constraints: The Worker resource consumption must satisfy
the long-term and short-term constraints:

lim
T−→∞

1

T

∑T

t=1

∑
aj ∈At

E{Rt
i j } ≤ Bi , ∀wi ∈ W, (4)∑

aj ∈At

Rt
i j ≤ bmax

i , ∀wi ∈ W, t ∈ T . (5)
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Platform recruitment budget constraints: The time-average recruitment cost of the plat-

form on the entire timeline must not exceed the budget Cbдt :

lim
T−→∞

1

T

∑T

t=1

∑
wi ∈W

E{Ct
i } ≤ Cbдt . (6)

In the above constraints, the expectation function E{·} is used to eliminate the influence of
stochastic in the dynamic spatiotemporal MCS system.

3.3 Problem Definition

We aim to find an online worker scheduling strategy with unknown worker quality to maximize
the long-term utility of the platform while satisfying the above constraints. The utility Ut of the
platform in a time slot t is defined as the total profits of tasks minus the total recruitment cost on
the entire timeline, that is,

Ut =
∑

wi ∈W

∑
aj ∈At

P t
i j −

∑
wi ∈W

Ct
i . (7)

The problem is formally defined as follows.

Problem 1. Online worker scheduling with unknown worker quality for Maximizing

Platform’s Long-term utility in Platform-centric spatiotemporal crowdsourcing systems

(MPLP). Given the time slot sequence T , the mobile worker set W with unknown quality qi for

each worker wi , the task set At for each time slot t ∈ T , the MPLP problem aims to find a worker

scheduling strategy Rt for each time slot to maximize platform’s long-term utility under constraint

Equations (3)–(6), which can be written as

(P1) max
R1, ...,RT

lim
T−→∞

1

T

∑T

t=1
E{Ut },

s.t. Equations (3), (4), (5), (6).

4 Online Worker Scheduling Framework

4.1 Overview

Our optimization problem includes challenges with long-term constraints, short-term constraints,
and unknown worker quality. To solve this problem, we first transform the optimization problem
under long-term constraints into a real-time queue stability control problem through the Lyapunov
optimization technique (Section 4.2). Then, we propose an algorithm based on Markov approxima-
tion to solve the real-time optimization problem with short-term constraints (Section 4.3), in which
we ignore the condition of unknown worker quality. To deal with the challenge of unknown worker
quality, we model the worker quality prediction problem as an MAB problem and use the UCB al-
gorithm to solve this problem (Section 4.4). Finally, we integrate the methods in Section 4.3 and
Section 4.4, and design an algorithm to solve the online worker scheduling problem with unknown
worker quality (Section 4.5).

4.2 Problem Transformation and Online Framework

The core challenge of the original MPLP problem P1 is that the optimal worker scheduling strategy
relies on future information, which is impossible to obtain due to the dynamic and stochastic
property of the spatiotemporal MCS system. To address the issue, we decompose the long-term
optimization object under long-term constraints into each single time slot based on Lyapunov
optimization, and transform the original problem into a queue stability control problem.

For clarity, we define ER
i (t) =

∑
aj ∈At

Rt
i j − Bi and EC (t) =

∑
wi ∈W Ct

i − Cbдt . Then, we de-

fine virtual queues with initial values of 0 for each long-term constraint of Equations (4) and (6),
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respectively, that is,

QR
i (t + 1) = max{QR

i (t) + E
R
i (t), 0},∀wi ∈ W, (8)

QC (t + 1) = max{QC (t) + EC (t), 0}. (9)

Each virtual queue represents the exceeded budget of each constraint. From Equation (8), we have

QR
i (t + 1) −QR

i (t) ≥
∑

aj ∈At

Rt
i j − Bi ,∀wi ∈ W. (10)

By summing the inequality on each t ∈ T and take expectation, we have

1

T

∑T

t=1

∑
aj ∈At

E{Rt
i j } − Bi ≤

E{QR
i (T )}

T
. (11)

Therefore, to satisfy the constraint (4), we only need to satisfy the following constraint:

lim
T−→∞

E{QR
i (T )}

T
≤ 0,∀wi ∈ W. (12)

Similarly, constraint Equation (6) can be satisfied by meeting the following constraint:

lim
T−→∞

E{QC (T )}

T
≤ 0. (13)

Constraint Equations (12) and (13) suggest that we only need to control the stability of the virtual
queues to satisfy the long-term constraints. Next, we introduce the Lyapunov function and one-slot

conditional Lyapunov drift [22] to stabilize the virtual queues.

Define Θ(t) � {QR
1 (t),Q

R
2 (t), . . . ,Q

R
m(t),Q

C (t)} as the vector of all virtual queues at time slot t ,
the Lyapunov function can be defined as follows:

L(Θ(t)) � 1

2

∑m

i=1
QR

i (t)
2 +

1

2
QC (t)2. (14)

The one-slot conditional Lyapunov drift is defined as Δ(Θ(t)) � E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)],
which reflects the expected backlog increment of all virtual queues over one slot. Then, we leverage
the Lyapunov drift-plus-penalty function to approximately solve our problem on each time slot t ,
and we get the following problem:

(P2) max
Rt

E[V ·Ut |Θ(t)] − Δ(Θ(t)),∀t ∈ T ,
s.t. Equations (3), (5), (12), (13),

where V is a positive weight that balances utility and virtual queue backlogs.
According to Lemma 4.6 in Reference [22], we can derive that

Δ(Θ(t)) ≤ B +
∑

wi ∈W
QR

i (t)E
R
i (t) +Q

C (t)EC (t), (15)

where B is a positive constant value for all t ∈ T . Define that Ω(t) =
∑

wi ∈W QR
i (t)E

R
i (t) +

QC (t)EC (t), then, problem P2 can be approximately solved by addressing the following problem:

(P3) max
Rt

E[V ·Ut − Ω(t)|Θ(t)],∀t ∈ T ,
s.t. Equations (3), (5).

The first component in the objective function of P3 is about maximizing the platform’s utility in
each time slot, corresponding to the objective function of MPLP. The second component is about
controlling the virtual queue backlogs, which reflects the exceeded budget of each time-average
constraint. The positive weight V is used to adjust the trade-off between the two components.
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ALGORITHM 1: Online Worker Scheduling (OWS) Algorithm

input :W, T , At for t ∈ T , and control parameter V .

output :Worker scheduling strategies R∗1, . . . ,R
∗
T

.

1 QC (0) = 0, QR
i (0) = 0 for each wi ∈ W;

2 for t = 0 to T − 1 do

3 Find the optimal solution R∗t of P3;

4 Calculate virtual queues QR
i (t + 1) and QC (t + 1) for the next time slot by Equations (8) and (9);

5 return R∗1, . . . ,R
∗
T

;

By solving P3 on each time slot t , we get a feasible solution for the original MPLP problem. The
proposed online algorithm is described in Algorithm 1.

In Algorithm 1, we need to find the optimal solution of P3, this requires us to learn the quality
of workers beforehand. In addition, P3 is an NP-hard problem due to its multi-knapsack property
[3]. Therefore, in the Section 4.3, we propose a worker scheduling model with unknown quality
based on the MAB model. Then, in the Section 4.4, We propose a Markov approximation method
to solve P3. Finally, we propose a solution algorithm to solve the problem in line 3 of Algorithm 1
in Section 4.5.

Notice that we omit constraint Equations (12) and (13) in P3, the two constraints are hidden
in the second component of P3’s optimization objective function, and the solution obtained by
Algorithm 1 can satisfy these two constraints, which will be proved in next section.

4.3 Markov Approximation Method

In this subsection, we design a Markov approximation-based algorithm to approximately solve P3

for Algorithm 1, which is inspired by Reference [23]. We useG(Rt ) to denote the objective function
of P3, then P3 can be transformed into the following form:

(P4) max
∑

Rt ∈Ft

p(Rt ) ·G (Rt ) ,

s.t.
∑

Rt ∈Ft

p(Rt ) = 1,∀t ∈ T ,
where Ft is the collection of all feasible solutions, and p(Rt ) represent the probability of the solu-
tion Rt is adopted at time slot t . Obviously, the optimal solution of (P4) is to set p(Rt ) = 1 for Rt

that maximize G(Rt ).
Let Γ = 1

γ

∑
Rt ∈Ft

p(Rt ) · logp(Rt ), where γ denote a positive constant that controls the ap-

proximation ratio of the entropy term. Thus, this problem can be approximated as a log-sum-exp
problem [4] as

(LSE − P4) min
∑

Rt ∈Ft

p(Rt ) ·G (Rt ) + Γ,

s.t.
∑

Rt ∈Ft

p(Rt ) = 1,∀t ∈ T .

The optimality gap between LSE − P4 and P4 is bounded by 1
γ

log |Ft | according to Reference

[4]. Actually, the problem LSE − P4 converges to the problem P4 when γ approaches infinity. By
utilizing the Karush-Kuhn-Tucker condition [1], we can get the optimal solution of LSE − P4 for
any t ∈ T ,Rt ∈ Ft :

p(Rt ) =
exp (γ ·G (Rt ))∑

R̃t ∈Ft
exp

(
γ ·G

(
R̃t

)) . (16)
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ALGORITHM 2: Markov Approximation-based Algorithm

input :W, T , At for time slot t , Ft , iteration number Ic .

output :The optimal strategy R∗t in time slot t .

1 R∗t = ∅ and G
(
R∗t

)
= 0;

2 Randomly select Rt form Ft ;

3 while Ic > 0 do

4 Calculate G (Rt );

5 if G (Rt ) > G
(
R∗t

)
then

6 R∗t = Rt ;

7 Select a new strategy R′t based on the transition probability (17);

8 Update Rt by R′t ;

9 Ic = Ic − 1;

10 return R∗t ;

Then, we can find the solution for P4 by choosing Rt with the maximum probability p(Rt ) got
from Equation (16). Next, we design a Markov chain-based algorithm to solve the problemLSE−P4,
which also returns a feasible solution for P4.

The key idea of the Markov chain-based algorithm is to create a time-reversible ergodic Markov
chain [4] that achieves the stationary distribution as shown in Equation (16). The constructed
Markov chain should be irreducible, that is, any state is reachable from any other state. Also, the
following balance equation should be satisfied: p(Rt ) · p(Rt ,R′t ) = p(R

′
t )) · p(R

′
t ),Rt ),∀Rt ,R′t ∈ Ft ,

and Rt � R′t , where Ft is the state space, and p(Rt ,R′t ) is the transition probability from state Rt

to R′t . Based on Lemma 1 of Reference [4], we could construct such a Markov chain as follows.
First, we treat the solution space Ft of LSE − P4 as the state space, and the transition probability
p(Rt ,R′t ) for any two states Rt ,R′t ∈ Ft and Rt � R′t is set as follows:

p(Rt ,R
′
t ) = ρ · exp

(γ
2

(
G

(
R′t

)
−G

(
Rt

)))
, (17)

where ρ is a positive constant.
The designed Markov chain-based algorithm is described in Algorithm 2. In the algorithm, we

randomly choose a state, i.e., a worker scheduling strategy Rt from the solution space. Then, we
constantly update the state according to the transition probabilities, thus forming a Markov chain,
and iterate this process until the Markov chain converges. Note that during the iteration, the best
strategy has been recorded.

When the Markov chain reaches the stationary distribution, or equivalently, satisfies the balance
equation, we can get the optimal strategy. Recall that the optimality gap between LSE − P4 and
P4 is bounded by 1

γ
log |Ft |, we can set γ as large as possible to get a better solution. Assume

that the algorithm achieves convergence within Ic iterations, we need to calculate |Ft | transition
probabilities in each iteration, then, the time complexity of Algorithm 2 is O(Ic |Ft |).

In this subsection, we explain how to solve the queue stability control problem using Markov
approximation. However, the worker quality is unknown for the platform, which poses challenges
to maximizing the platform’s long-term utility. Therefore, in the next subsection, we will explore
how to learn workers’ quality with the UCB algorithm.

4.4 Worker Quality Learning

In the process of scheduling unknown quality workers, we need to continuously learn about the
workers’ quality and choose workers with as high quality as possible to maximize the long-term
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utility of the platform within a limited budget. This is actually an online learning and sequential
decision-making problem, which is very similar to the MAB problem. The classic MAB problem is
a typical exploration-exploitation problem [28]. It assumes that a gambler operates a multi-armed
slot machine, and pulling the arm results in a reward that follows an unknown distribution. The
gambler pulls one arm periodically based on bandit policy, and the goal is to maximize the cumu-
lative reward by constantly experimenting and selecting arms. Therefore, we model the worker
quality learning problem as an MAB problem. Specifically, we consider each worker as an arm,
and its quality as the corresponding reward.

For the MAB problem, the UCB algorithm is an effective approach to balance exploration and
exploitation. It balances the arm with a higher uncertain reward and the arm with a higher known
reward by calculating a confidence interval for each arm and selecting the arm with the highest
upper confidence bound. The upper confidence bound consists of two parts:

(1) Estimated average reward: calculated from the historical data of the currently selected arm.
(2) Uncertainty measurement: The fewer times the arm is selected, the higher the uncertainty.

By combining these two parts, the UCB algorithm can take into account arms with higher cur-
rent rewards without ignoring those with fewer choices but higher potential rewards.

For clarity, we letCBt
i denote the total resource consumed by workerwi until time slot t , which

can be expressed as

CBt
i = CB

t−1
i +

∑
aj ∈At

Rt
i j ,∀t ∈ T , (18)

where CB0
i = 0.

In our worker quality learning problem, we use q̃t
i to denote the learned quality for worker wi

until time slot t , i.e., the estimated average reward of the ith arm until time slot t , which can be
calculated as

q̃t
i =

q̃t−1
i CBt−1

i + qt
i

∑
aj ∈At

Rt
i j

CBt
i

,∀t ∈ T\{t = 1}, (19)

where for each worker wi , we set q̃1
i = 1.

We use ηt
i to denote the uncertainty measure. To balance exploration and exploitation more

effectively, we assume the best will happen when facing uncertainty [43] and calculate ηt
i in the

following way:

ηt
i =

√
2 ln

(∑
wi ∈W CBt−1

i

)
CBt−1

i

,∀wi ∈ W, t ∈ T\{t = 1}, (20)

where we let η1
i = 0.

Let q̂t
i denote the upper confidence bound, which is also called the UCB-based quality, and it

can be calculated as follows:

q̂t
i = q̃

t
i + η

t
i ,∀wi ∈ W, t ∈ T . (21)

From Equations (20) and (21), we can observe that a decrease in CBt
i leads to a corresponding

increase in ηt
i , which means the workers who previously consumed fewer resources (i.e., been

scheduled rarely) will have higher UCB-based quality, and thus are more likely to be scheduled in
the following time slots. In the next subsection, we combine the UCB algorithm with the Markov
approximation and design an algorithm to solve the online worker scheduling problem with un-
known worker quality.

4.5 Algorithm Design

The goal of our problem is to maximize the platform’s utility within a limited recruitment budget
while ensuring the long-term and short-term constraints of workers, in other words, we aim to
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ALGORITHM 3: UCB-based Algorithm

input :t ,W, T , At for time slot t .
output :The optimal strategy R∗t in time slot t .

1 R∗t = ∅, R
s,∗
t = ∅, G

(
R∗t

)
= 0,Ws

t = ∅;

2 if t == 1 then

// Initialization exploration phase:

3 Recruit all unknown workers, i.e.,Ws
t ←W ;

4 for each worker wi ∈ W do

5 q̃1
i ← 1;

6 Randomly assign a task aj ∈ At and set Rt
i j = r

min
j,t ,R

t
i j ∈ R

∗
t ;

7 Calculate Rt
i j ∈ R

∗
t for the unassigned task by Algorithm 2;

8 else

// Exploitation phase:

9 Ws ′

t = ∅, G(R
s ′,∗
t ) = ∅;

10 for each worker wi ∈ W do

11 Calculate CBt
i based on Equation (18);

12 Calculate q̃t
i based on Equation (19);

13 Calculate q̂t
i based on Equations (20) and (21);

14 Sort the workers according to the UCB-based quality: q̂t
1 ≥ q̂t

2 ≥ · · · ≥ q̂t
m ;

15 Select the worker with the highest q̂t
i intoWs

t ; Remove the worker fromW;

16 calculate Rs,∗
t by Algorithm 2 based onWs

t , and calculate G(Rs,∗
t );

17 while
���G(Rs,∗

t ) −G(R
s ′,∗
t )

��� > ϵ do

18 Ws ′

t ←W
s
t , G(Rs ′,∗

t ) ← G(Rs,∗
t );

19 Select the worker with the highest q̂t
i intoWs

t ; Remove the worker fromW;

20 Calculate Rs,∗
t by Algorithm 2 based onWs

t , and calculate G(Rs,∗
t );

21 R∗t ← Rs,∗
t ;

22 return R∗t ;

recruit as high-quality workers as possible within a limited budget. Therefore, we designed the
following strategy. Concretely, in each time slot t , we calculate the UCB-based quality q̂t

i for each
worker wi , then sort the workers in descending order by q̂t

i . The platform selects the scheduling
workers according to the order iteratively. LetWs

t denote the set of currently selected workers,

Ws ′

t denote the set of workers selected in the previous iteration, Rs,∗
t denote the optimal resource

purchase strategy obtained by Algorithm 2 based onWs
t . In each iteration, the platform selects the

unselected workers with the highest q̂t
i intoWs

t and uses Algorithm 2 to make resource purchase

strategy Rs,∗
t . If the difference between G(Rs,∗

t ) and G(Rs ′,∗
t ) is less than ϵ , then stop the iteration

and set R∗t equal to Rs,∗
t ; otherwise, continue iterating. This method incrementally optimizes the

platform’s utility, helping to avoid inefficient consumption of the platform’s budget.
We illustrate the pseudo-code of the worker scheduling in Algorithm 3, the pseudo-code consists

of worker scheduling with unknown quality and optimal resource purchase strategy formulation.
We do some necessary initialization in line 1. Then, we make a judgment if the current is the initial
time slot, if yes, then we recruit all workers in line 4 to explore all workers’ qualities and set the
quality of all workers to 1 in line 5. After that, we randomly assign a task to each worker in line
6. Then, we make the resource purchase strategy for the unassigned task by Algorithm 2 in line
7. Rt

i j obtained from line 4 to line 7 together form R∗t in the initial time slot. If the current is not
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the initial time slot, then we first setWs ′

t to empty set in line 9, which denotes thatWs
t has not

been updated. Rs ′,∗
t denote the corresponding optimal resource purchase strategy. In lines 10-13,

we calculate the UCB-based quality q̂t
i . Then, we rank the workers in descending order of q̂t

i in line
14. Next, we select the worker with the highest UCB-based quality intoWs

t and call Algorithm 2
to calculate the optimal resource purchase strategy based on Ws

t in line 16. After that, in lines

17-20, we determine whether the absolute value of the difference between G(Rs,∗
t ) and G(Rs ′,∗

t ) is
greater than the error ϵ or not. If it is, then we continue the update; otherwise, we stop the update
and return the final optimal purchase strategy R∗t . We use Algorithm 3 to solve the problem in line
3 of Algorithm 1.

In the initial exploration phase, the time complexity is at most O(Ic |Ft |). In the explo-
ration phase, let Fs

t denote the collection of all feasible solutions based on Ws
t , the time com-

plexity of sorting is O(m log(m)), and the time complexity of computing G(Rs,∗
t ) is O(Ic |Fs

t |).
This process is performed |Ws

t | times. Therefore, the time complexity of Algorithm 3 is
O

(
Ic |Ft | + Ic |W

s
t | · |F

s
t |
)
.

5 Performance Analysis

In this section, we first analyze the convergence and approximation properties of Algorithm 1.
Then, we analyze the regret upper bound of Algorithm 3.

5.1 Convergence and Approximation Analysis

It’s easy to know thatUt is a bounded function due to constraints, for clarity, we letUmin andUmax

be the upper and lower bounds of Ut on all time slots, respectively.

Theorem 5.1. The solution obtained by Algorithm 1 meets constraint Equations (12) and (13).

Proof. Based on Lemma 4.6 in Reference [22], we have Δ (Θ(t)) ≤ B+Ω(t), where B is a positive
constant value, thus we can get the following inequation:

V ·Umax − Δ (Θ(t)) ≥ V ·Umin − B − Ω(t). (22)

As Δ(Θ(t)) � E[L(Θ(t + 1)) −L(Θ(t))|Θ(t)] and L(Θ(t)) � 1
2

∑m
i=1 Q

R
i (t)

2 + 1
2Q

C (t)2, then, taking
the summation of both sides of Equation (22) on T , and combining with the Cauchy-Bunyakovsky-
Schwarz inequality, we obtain(∑

wi ∈W
QR

i (T ) +Q
C (T )

)2
≤ 2T (B +V (Umax −Vmin)) + 2

∑T

t=1
Ω(t). (23)

Then, dividing both sides of Equation (23) by T 2 and taking the square root of it, we have∑
wi ∈W QR

i (T ) +Q
C (T )

T
≤

√
2 (B +V (Umax −Vmin))

T
+

2
∑T

t=1 Ω(t)

T 2
. (24)

As is proved in Theorem 4.8 in Reference [22], all queues are mean rate stable, thus

limT−→∞
1
T

∑T
t=1 Ω(t) has a constant upper bound. Then, taking expectations on both sides of Equa-

tion (24) and letting T tend to infinity, we can obtain

lim
T−→∞

E{
(∑

wi ∈W QR
i (T ) +Q

C (T )
)
}

T
≤ 0. (25)

And because of QR
i (T ) ≥ 0,∀wi ∈ W,Q

C (T ) ≥ 0, we have lim
T−→∞

E{QR
i (T )}/T = 0,∀wi ∈ W

and lim
T−→∞

E{QC (T )}/T = 0. �
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Let R∗t be the optimal strategy for P1 for time slot t , and R
p
t denote the strategy determined by

Algorithm 1 and 2 in time slot t . Then, we have the following theorem.

Theorem 5.2. For any δ > 0 and positive control parameter V ≥ 0, we have

UOPT − lim
T−→∞

1

T

∑T

t=1
E{Ut (R

p
t )} ≤

B′

V
− δ , (26)

whereUOPT = lim
T−→∞

1
T

∑T
t=1 E{Ut (R∗t )}, and B′ = B+ 1

γ
log |Ft |. Recall that 1

γ
log |Ft | is the Markov

approximation optimal gap.

Proof. Let us recall the model description in Section 2. Platform utility on each time slot is
related to the process of task arrival. According to Theorem 4.5 in Reference [22], if the process of
task arrival is stationary, then for any δ > 0, we have

UOPT ≤ E{Ut (R
p
t )} + δ , (27)

E{ER
i (t)} ≤ δ ,∀i ∈ W, E{EC (t)} ≤ δ . (28)

Combining Lemma 4.6 in Reference [22], the following inequality can be obtained:

V · E{U
(
R

p
t

)
} − Δ (Θ(t)) ≥ V · E{U

(
R

p
t

)
} − B′ − Ω(t) ≥ V · (UOPT + δ ) − B

′. (29)

As Δ(Θ(t)) � E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)], by summing the time slots t over T on both sides

of Equation (29) and rearranging the terms, we haveUOPT − lim
T−→∞

1
T

∑T
t=1 E{Ut (R

p
t )} ≤

B′

V
−δ . �

Theorem 5.3. For any positive control parameter V ≥ 0, the time average expected virtual queue

satisfies

lim sup
T−→∞

1

T

∑T

t=1
E{‖Θ(t)‖1} ≤

V · (Umax −Umin) + B
′

ϵ
. (30)

Proof. Suppose ∃ϵ ≥ 0 such that for all time slot t ∈ T and all possible values of Θ(t), according
to Theorem 4.2 in Reference [22], we have

V · E{Ut |Θ(t)} − Δ (Θ(t)) ≥ V ·Umin − B
′ + ϵ ‖Θ(t)‖1 . (31)

Then, as Δ(Θ(t)) � E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)] and Umax is the upper bound of Ut . Summing
over T on both sides of Equation (31) and rearranging terms, we have

1

T

∑T

t=1
E{‖Θ(t)‖1} ≤

V · (Umax −Umin) + B
′

ϵ
+C, (32)

where C = E{L(Θ(0))}
ϵT

. The theorem can be proved by setting T −→ ∞ in Equation (32). �

Theorems 5.2 and 5.3 show that the gap between the utility obtained by MPLP-C and the optimal
utility can be measured by O(1/V ), and the size of the time average queue can be measured by
O(V ), which implies that we can adjust the control parameter V to achieve the balance between
the optimal goal and the queue stability.

5.2 Regret Analysis

The main challenge of using UCB to solve the MAB problem lies in the balance between exploration
and exploitation. In our problem, that is, the balance between exploring the quality of workers and
scheduling workers with the highest quality who have been explored as many as possible. The
general measurement metric of this balance is the regret, i.e., the quality loss due to not selecting
the globally highest quality workers for each schedule in all time slots.
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Before analyzing regret, we need to clarify a fact. During the scheduling of workers in time slot
t , each time we select the worker with the highest quality, the size of the set of available workers
decreases by 1. The size of the workers’ set only affects the value of the quality regret’s upper
bound, not the structure of it. Therefore, we only analyze the quality regret in the situation where
the platform selects a worker for the first time in every time slot. Similar conclusions can be drawn
in the subsequent selection of workers.

Let q∗ denote the highest expected quality among all workers, Si (t) denote the number of times
workerwi is selected as the first selection in each time slot up to time slot t , and It denote the first
selected worker in time slot t . In addition, we denote the amount of It ’s resource purchased by the
platform in time slot t as B1

t . That is,

B1
t =

∑
aj ∈At

Rt
i j ,wi = It ,∀t ∈ T . (33)

Then, the quality regret in the situation where the size of the worker set is |W| =m is defined as
follows:

Rem =
∑

i :qi <q∗
ΔiE{Si (T )}, (34)

where Δi = CB
T
i (q
∗ − qi ).

Theorem 5.4. For |W| =m, the upper bound of the expected quality regret afterT time slots is as

follows:

Rem ≤
∑

i :qi <q∗

8(CBT
i )

2 ln
(∑

wi ∈W Tbmax
i

)
Δi

+

(
1 +

π 2

3

) ∑
i :qi <q∗

Δi . (35)

Proof. In Algorithm 3, each worker is selected at least once in the initial time slot. Then,

Si (t) = 1 +
∑T

t=2
I{It = wi }. (36)

By changing the original event It = wi to the union of two mutually exclusive events, we can
rewrite Equation (36) as

Si (t) = 1 +
∑T

t=2
I{It = wi , Si (T − 1) ≥ k} +

∑T

t=2
I{It = wi , Si (T − 1) < k}. (37)

Assuming that
∑T

t=2 I{It = wi , Si (T − 1) < k} ≥ k , which means worker wi is selected at least k
times between time slot t = 2 and current time slot, i.e., ∃t ′ ∈ T\t = 1, Si (t

′) ≥ k+1. Then, we have
Si (t

′−1) ≥ k , which is contradictory to Si (T −1) < k . Therefore,
∑T

t=2 I{It = wi , Si (T −1) < k} < k ,

i.e.,
∑T

t=2 I{It = wi , Si (T − 1) < k} ≤ k − 1, put that into Equation (37), and we have

Si (t) ≤ k +
∑T

t=2
I{It = wi , Si (T − 1) ≥ k}. (38)

Let q̃t,∗, q̂t,∗ and ηt,∗ denote the highest learned quality, the highest UCB-based quality and the
uncertainty measure associated with this UCB-based quality in time slot t , respectively. Combine

the UCB-based quality q̂t
i , we can rewirte

∑T
t=2 I{It = wi , Si (T − 1) ≥ k} as

∑T
t=2 I{q̂

t,∗ ≤ q̂t
i , Si (T −

1) ≥ k}. Due to:

min
0<s<t

q̂s,∗ ≤ q̂t,∗, q̂t
i ≤ max

k≤s ′<t
q̂s ′

i , (39)

We have the following inequation, and give further derivation:

Si (t) ≤ k +
∑T

t=2
I{ min

0<s<t
q̂s,∗ ≤ max

k≤s ′<t
q̂s ′

i }

≤ k +
∑T

t=2

∑t−1

s=1

∑t−1

s ′=k
I{q̂s,∗ ≤ q̂s ′

i }.

(40)
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According to Equation (21), we can rewrite q̂s,∗ ≤ q̂s ′

i as

q̂s,∗ − q̂s ′

i = q̃
s,∗ + ηs,∗ − (q̃s ′

i + η
s ′

i ) + q
∗ − q∗ + qi − qi

= (q̃s,∗ + ηs,∗ − q∗) − (q̃s ′

i − η
s ′

i − qi ) − (2η
s ′

i + qi − q
∗) ≤ 0.

(41)

If inequality Equation (41) holds, then at least one of the following three events must hold.

(1) q̃s,∗ + ηs,∗ − q∗ ≤ 0 ⇒ q̃s,∗ + ηs,∗ ≤ q∗. The maximum quality of workers based on UCB
is lower than their actual quality. However, the UCB algorithm is based on the principle
of optimism when facing uncertainty, i.e., q̂s,∗ is greater than q∗ generally. Therefore, the
highest UCB-based quality of the workers is too low in this situation.

(2) −(q̃s ′

i − η
s ′

i − qi ) ≤ 0⇒ q̃s ′

i ≥ qi + η
s ′

i . In this situation, the UCB-based quality of worker wi

is too high.
(3) −(2ηs ′

i + qi − q
∗) ≤ 0 ⇒ q∗ ≤ qi + 2ηs ′

i . This indicates that the highest UCB-based quality
of the workers is smaller than the UCB-based quality of worker wi , which is abnormal and
usually does not occur.

In Equation (34), to calculate Rem , we have to calculate E{Si (T )} first. Based on Equation (40),
we have

E{Si (T )} ≤ E
{
k +

∑T

t=2

∑t−1

s=1

∑t−1

s ′=k
I{q̂s,∗ ≤ q̂s ′

i }
}

= k +
∑T

t=2

∑t−1

s=1

∑t−1

s ′=k
P{q̂s,∗ ≤ q̂s ′

i },
(42)

where P{·} represents the probability of the event occurring.
Based on our above analysis for inequality Equation (41), we can scale P{q̂s,∗ ≤ q̂s ′

i } as follows:

P{q̂s,∗ ≤ q̂s ′

i } ≤ P{q̃
s,∗ + ηs,∗ ≤ q∗} + P{q̃s ′

i ≥ qi + η
s ′

i } + P{q
∗ ≤ qi + 2ηs ′

i }. (43)

Then, we use Chernoff-Hoeffding inequality to obtain the upper bound of P{q̃s,∗ + ηs,∗ ≤ q∗} and
P{q̃s ′

i ≥ qi + η
s ′

i }:

P{q̃s,∗ + ηs,∗ ≤ q∗} ≤ exp(−2(sηs,∗)2/s) = t−4, (44)

P{q̃s ′

i ≥ qi + η
s ′

i } ≤ exp(−2(s ′ηs ′

i )
2/s ′) = t−4. (45)

For P{q∗ ≤ qi + 2ηs ′

i }, as we do not want the corresponding event occurring, we can keep
it always 0 by controlling the value of k . In other words, we will control the value of k so that
q∗ > qi + 2ηs ′

i always holds. We reorganize q∗ > qi + 2ηs ′

i as follows:

q∗ − qi + 2ηs ′

i > 0

⇒ CBT
i (q
∗ − qi ) + 2CBT

i η
s ′

i > 0 (as CBT
i > 0)

⇒ Δi − 2CBT
i η

s ′

i > 0,

(46)

where ηs ′

i =

√
2 ln(

∑
wi ∈W

CBs′−1
i )

CBs′−1
i

according to Equation (20). Due to the resource budget bmax
i of

the worker wi in a single time slot, we have CBs ′−1
i ≤ Tbmax

i , and as k is the minimum times that

worker wi is selected between slot t = 2 and current time slot, we have CBs ′−1
i ≥ k . Thus, the

following inequality holds:

Δi − 2CBT
i η

s ′

i ≥ Δi − 2CBT
i

√
2 ln

(∑
wi ∈W Tbmax

i

)
k

> 0

⇒ k >
8(CBT

i )
2 ln

(∑
wi ∈W Tbmax

i

)
Δ2

i

.

(47)
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As k is an integer number, we can let k = 
8(CBT

i )
2 ln(

∑
wi ∈W

T bmax
i )

Δ2
i

� to ensure P{q∗ ≤ qi + 2ηs ′

i }

= 0.
Therefore, by combining Equations (34), (42), (43), (44), (45), and (47), we can calculate the upper

bound of the expected quality regret after T time slots:

Rem =
∑

i :qi <q∗

ΔiE{Si (T )}

≤
∑

i :qi <q∗

Δi

(
k +

T∑
t=2

t−1∑
s=1

t−1∑
s ′=k

P{q̂s,∗ ≤ q̂s ′

i }

)

≤
∑

i :qi <q∗

Δi

(⌈
8(CBT

i )
2 ln

(∑
wi ∈W Tbmax

i

)
Δ2

i

⌉
+

T∑
t=2

t−1∑
s=1

t−1∑
s ′=k

(
1

t4
+

1

t4
+ 0

))

≤
∑

i :qi <q∗

Δi

(
8(CBT

i )
2 ln

(∑
wi ∈W Tbmax

i

)
Δ2

i

+ 1 +

∞∑
t=1

t∑
s=1

t∑
s ′=1

(
1

t4
+

1

t4
+ 0

))

≤
∑

i :qi <q∗

Δi

(
8(CBT

i )
2 ln

(∑
wi ∈W Tbmax

i

)
Δ2

i

+ 1 +

∞∑
t=1

2

t2

)
.

(48)

According to Euler’s solution to the Basel problem, i.e.,
∑∞

t=1
1
t 2 =

π
6 , we have

Rem ≤
∑

i :qi <q∗

8(CBT
i )

2 ln
(∑

wi ∈W Tbmax
i

)
Δi

+

(
1 +

π 2

3

) ∑
i :qi <q∗

Δi . (49)

Let Bmax and qmin denote the maximum total resources and the minimum expected quality
among all workers, respectively. Then, the upper bound of Δi is calculated as follows:

Δi ≤ Bmax (q
∗ − qmin). (50)

Further, for the upper bound of Rem in Equation (49), we have

Rem ≤
∑

i :qi <q∗

8(CBT
i )

2 ln
(∑

wi ∈W Tbmax
i

)
Δi

+

(
1 +

π 2

3

) ∑
i :qi <q∗

Δi

≤
8mBmax ln

(∑
wi ∈W Tbmax

i

)
q∗ − qmin

+

(
1 +

π 2

3

)
mBmax (q

∗ − qmin)

= O
(
ln

(∑
wi ∈W

Tbmax
i

))
,

(51)

which demonstrates that our algorithm has a sublinear regret. �

6 Simulations

6.1 Experimental Settings

In the simulation experiment, we establish a total of T = 1, 500 slots and assume the presence
of 30 crowdsourcing workers. The long-term time-average resource constraint for each worker is
randomly assigned within the range of [6.5, 16.5] per time slot, with a unit price of τ = 1. The
real quality of each worker is randomly assigned within the range of [0, 1]. The total budget for
the platform to purchase worker resources is set to sixty to one hundred percent of the cost of the
total resources of all workers. The number of tasks received by the platform in each time slot t
follows a Poisson distribution with λ = 2|W|. For task aj , the minimum resource rmin

j,t required

to execute is a random number on [2, 5]. For the parameter in the profit function of task aj , α j
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Table 3. Simulation Parameter Settings

Parameter Values

Unit resource price τ of workers 1
Workers set size |W| 30

Tasks set size |At | in time slot t Poisson distribution (λ = 2 |W|)
Profit parameters α j , βj of aj [5, 15]

Total time slots T 1500

Long-term time-average resource constraint Bi [6.5, 16.5]
Resource budget bmax

i of wi in a single time slot [2, 6]
Task completion quality qt

i of wi in time slot t [0, 1]
Minimal resource requirement rmin

j,t of aj in time slot t [2, 5]

and βj are randomly distributed in [5, 15]. bmax
i is a multiple of time-average resource, where the

multiple is in the range of [2, 6]. We run the algorithm 100 times under each given setting, and the
data points in our figures are the average results of 100 runs. Simulation parameter settings are
summarized in Table 3.

We compare our proposed Online Worker Scheduling (OWS) algorithm (Algorithm 1, which
integrates Algorithm 3) with three baseline algorithms to evaluate its performance:

— OWS with Known Quality (OWS-KQ): This algorithm is based on our OWS algorithm,
the difference is that the platform has perfect knowledge of the real quality of each worker.
By eliminating the need for exploration, the platform directly schedules workers based on
their actual qualities. This serves as an upper bound for our algorithm, as it operates under
idealized conditions.

— OWS Without Short-term constraints (OWS-WS): This algorithm is also based on our
OWS algorithm, which ignores the short-term constraints of workers’ resource provision
Equation (5). The algorithm is used to evaluate the impact of short-term constraints on plat-
form utility.

— Greedy algorithm (Greedy): In this algorithm, we replace the long-term constraint with
an average constraint on each time slot, i.e., we consider the worker’s resource constraint
and the platform’s budget constraint to be the same on each time slot. Then, in each time
slot, we use a greedy algorithm to schedule workers. The greedy criterion is to iteratively
select the worker with the highest quality within the constraint range and match the worker
with the task with the highest profit.

6.2 Preformance Evaluation

Impact of control parameterV : From Figure 2, we can see that the time-average platform utility
increases as the control parameterV increases. The result matches the conclusion of Theorem 5.2,
that is, the gap of the time-average platform utility between our algorithm and the optimal solution
is limited by O(1/V ). In addition, overall, the time-average virtual queue size of the platform and
workers also increases as V increases, and the result matches the conclusion of Theorem 5.3, that
is, the size of the time-average virtual queue is limited by O(V ).

Role of virtual queues: As shown in Figure 3(a), when the platform consumes a large amount
of budget to purchase worker resources in time slot t , the value of the budget virtual queue in time
slot t+1 will increase. Due to the queue stability control of our algorithm, the budget consumption
in time slot t + 1 will be reduced accordingly. This correlation between the budget virtual queue
and budget consumption is most evident during time slots 15 to 16 and 18 to 19. Notably, when the
budget consumption does not exceed the long-term time-average budget, the virtual queue value
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Fig. 2. Impact of control parameter V.

(a) Budget virtual queues (b) Resource virtual queues

Fig. 3. Analysis of relationship between virtual queue and consumption.

does not increase. This is determined by the definition of the virtual queue and can be clearly ob-
served during time slots 21 to 27. In Figure 3(b), there is a similar relationship for worker resources
between consumption and virtual queues. In time slots 21 to 25 in Figure 3(b), we can see that the
worker resource consumption in multiple consecutive time slots does not exceed the time average
resource amount. This is because too many resources are consumed in time slot 20, resulting in
a large virtual queue. As a result, fewer resources are consumed in several consecutive time slots,
thereby reducing the size of the virtual queue. This indirectly shows that our algorithm meets the
long-term constraint of resource consumption by controlling the size of the virtual queue.

The queue stability: In our experiment, we set up 30 workers and one platform. Figures 4(a)–
4(c), respectively, show the changes for the budget virtual queue of the platform, the resource
virtual queue of the highest real quality worker, and the resource virtual queue of the lowest
real quality worker over time, when V = 25. The virtual queue for workers with the highest real
quality shows a clear trend of increasing and then converging, while the virtual queues for the
platform and workers with the lowest real quality fluctuate and then decrease. This is because
the OWS algorithm prioritizes selecting workers with high real quality to perform tasks in each
time slot, resulting in workers with high true quality consuming higher resources in the first few
time slots. However, due to the queue control mechanism of the algorithm, all queues eventually
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(a) Budget virtual queues (b) High quality worker’s queue

(c) Low quality worker’s queue (d) Lyapunov function value

Fig. 4. Analysis of the virtual queues stability.

converge in the later stages. According to the proof of Theorem 5.1, we can use the Lyapunov
function (Equation (14)) to determine whether our algorithm satisfies the long-term constraints.
As shown in Figure 4(d), We find that as the value of V increases, the time slot at which the
Lyapunov function value reaches its peak occurs progressively earlier. This corresponds to the
role of the control parameterV . In Section 4.2, we useV to balance the emphasis between platform
utility and queue stability, with a larger V indicating a greater emphasis on platform utility. This
means that as V increases, the platform consumes more worker resources in each time slot to
maximize the objective function of Problem P3, resulting in the Lyapunov function value peaking
earlier.

Utility and regret analysis: In our experimental setup, the resource budget bmax
i per worker

per time slot is set as a multiple of the time-averaged resources, with the multiple ranging from
[2, 6]. The platform budget Cbдt is set to sixty to one hundred percent of the cost of purchasing
all workers’ resources. In Figure 5, we compare the time-average utility and regret under different
settings of bmax

i and Cbдt when V = 25. Figure 5(a) shows that with the increasing of bmax
i , time-

average utility and regret also increase, but when the multiple reaches 4, the two reach a peak,
and the further increase of bmax

i reduces it. This situation occurs because when bmax
i increases

beyond a certain value, its limitation on the consumption of worker resources becomes weaker
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(a) Different bmax
i (b) Different Cbдt

Fig. 5. Utility and regret analysis.

than the long-term constraint on worker resource consumption. In Figure 5(b), the time-average
utility of the platform increases as Cbдt increases, but when it reaches eighty percent, the time-
average utility stops growing. This is due to the limited long-term and short-term constraints on
worker resources so that even if the platform has a sufficient budget, it can not consume more
worker resources.

Algorithm comparison: In the most important aspect of the platform’s utility, as shown in Fig-
ure 6(a), we compared the time-average utility of our proposed OWS algorithm and other baseline
algorithms under different V conditions. Since we do not know the real quality of each worker
at the beginning and use the UCB algorithm to learn the quality of workers, the time-average
utility obtained by the OWS algorithm is slightly less than that obtained by the OWS-KQ algo-
rithm with known worker’s real quality. For the OWS-WS algorithm, while OWS-WS has fewer
constraints compared to OWS, its performance is worse due to several reasons. First, by ignoring
short-term constraints, OWS-WS may over-consume worker resources or budget in early time
slots, leading to resource shortages in later time slots and reducing overall utility. Second, the ab-
sence of short-term constraints may result in the platform consuming more budget to purchase the
resources of workers with low quality in the initial time slot, then reducing the utility. In contrast,
OWS satisfies both short-term and long-term constraints, achieving better performance despite
stricter constraints. The Greedy algorithm can only consume time average resources and budget
at most on each time slot, resulting in its final task completion rate and resource utilization rate
is low (as shown in Figures 6(c) and 6(d)), which makes its time-average utility low. In the aspect
of regret, as shown in Figure 6(b), our algorithms are much smaller than algorithms OWS-WS
and Greedy. Specifically, because the OWS-WS algorithm does not account for the short-term re-
source constraints of workers, the platform may purchase a significant amount of resources from
workers with low expected quality in the initial time slots. This leads to an insufficient budget
for purchasing resources from workers with high expected quality in the middle and later time
slots, thereby increasing the algorithm’s regret. For the Greedy algorithm, the platform lacks a
sufficient budget to explore workers’ expected quality during each recruitment, resulting in an ex-
tended exploration phase and inadequate exploration outcomes for recruiting workers with high
expected quality, which leads to greater regret. Finally, in the aspect of task completion rate and
resource utilization rate, as shown in Figures 6(c) and 6(d), The performance of our algorithm has
a slight gap compared to the OWS-KQ algorithm, which is inevitable, because we need to explore
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(a) Utility comparison (b) Regret comparison

(c) Task completion comparison (d) Resource utilization comparison

Fig. 6. Algorithm comparison.

the true quality of workers in initial time slots. However, compared to OWS-WS and Greedy, our
algorithm achieves a higher task completion rate and resource utilization rate. For the OWS-WS
algorithm, it initially consumed too much platform budget to purchase worker resources, resulting
in insufficient budget in the later stages to acquire resources and execute tasks, which in turn led
to lower task completion and resource utilization rates. For the Greedy algorithm, since the budget
available for purchasing resources in each time slot is strictly limited, the amount of resources it
can consume is lower than the total available worker resources, which in turn leads to a lower task
completion rate and resource utilization rates.

7 Conclusion

In this article, we study the online worker scheduling problem with unknown quality for spatiotem-
poral crowdsourcing systems. The objective is to maximize the long-term utility of the platform
under the long-term constraints of workers and the platform without knowing the real quality of
the workers. To address the problem, we employ Lyapunov optimization techniques to decouple
the long-term constraints and design an algorithm based on the UCB algorithm and Markov ap-
proximations to find solutions for each time slot. Extensive computer simulations have validated
the efficacy and reliability of our designs.
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