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Two-Stage Deep Energy Optimization
in IRS-Assisted UAV-Based Edge
Computing Systems
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Abstract—Integrating wireless-powered Mobile Edge Comput-
ing (MEC) with Unmanned Aerial Vehicles (UAVs) leverages
computation offloading services for mobile devices, significantly
enhancing the mobility and control of MEC networks. However,
current research has not focused on customizing system designs for
Terahertz (THz) communication networks. When dealing with THz
communication, one must account for blockage vulnerability due to
severe THz wave propagation attenuation and insufficient diffrac-
tion. The Intelligent Reflecting Surface (IRS) can effectively ad-
dress these limitations in the model, enhancing spectrum efficiency
and coverage capabilities while reducing blockage vulnerability
in THz networks. In this paper, we introduce an upgraded MEC
system that integrates IRS and UAVs into THz communication net-
works, focusing on a binary offloading policy for studying the com-
putation offloading problem. Our primary objective is to optimize
the energy consumption of both UAVs and User Electronic Devices,
alongside refining the phase shift of the IRS reflector. The problem
is a Mixed Integer Non-Linear Programming problem known as
NP-hard. To tackle this challenge, we propose a two-stage deep
learning-based optimization framework named Iterative Order-
Preserving Policy Optimization (IOPO). Unlike exhaustive search
methods, IOPO continually updates offloading decisions through
an order-preserving quantization method, thereby accelerating
convergence and reducing computational complexity, especially
when handling complex problems with extensive solution spaces.
The numerical results demonstrate that the proposed algorithm
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significantly improves energy efficiency and achieves near-optimal
performance compared to benchmark methods.

Index Terms—Mobile edge computing, deep learning,
unmanned aerial vehicles, intelligent reflective surface, terahertz
communications.

I. INTRODUCTION

MOBILE Edge Computing (MEC) network enhanced by
A the inclusion of Unmanned Aerial Vehicles (UAVs) stands
as a fitting solution for ensuring reliable network services at
target locations, leveraging their mobility and precise deploy-
ment capabilities [1], [2], [3], [4], [5], [6], [7], [8]. Yet, limited
research of the present researchers have considered constructing
this model under Terahertz (THz) communication, which can
offer abundant bandwidth resources, and this is crucial in an
era in which communicating data is growing with an explosive
speed [9].

However, the high propagation loss associated with THz
transmissions due to electromagnetic signal travel through the
medium and water vapor’s absorptive properties in the at-
mosphere [10] poses a significant challenge. Fortunately, the
proposed intelligent reflective surface (IRS) can reconfigure
wireless propagation channels by adjusting phase shifts of re-
flecting elements. This innovation significantly enhances com-
munication, especially in UAV-supported THz communication
systems [11], [12]. Recent studies [13], [14], [15], [16] have
demonstrated that IRS can be a significant component in UAV-
assisted MEC systems. Furthermore, additional research [17],
[18], [19], [20], [21], [22], [23], [24] has shown that IRS plays a
crucial role in augmenting wireless communication performance
and increasing network transmission speed.

Despite this, task offloading allocations in an IRS-assisted
multi-UAV MEC system operating within the THz network
remain underexplored, with minimal research in this area. The
continuous fluctuations in channel gain, user and UAV posi-
tioning, and phase shifts perpetually impact transmission speed.
With constrained resources allocated to UAVs, an imperative
arises for an energy-efficient offloading plan. Optimizing both
task offloading decisions and phase shifts becomes vital. How-
ever, this optimization problem, referred to as a Mixed-Integer
Non-Linear Programming (MINLP) problem, is complex and
NP-hard.
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Fig. 1. The proposed IRS-assistant UAV-MEC system. User data can be
directly transmitted from UEDs to UAVs or be redirected to UAVs from IRS.

Recent research has introduced optimization methods based
on reinforcement learning to address this challenge. While some
methods like discretizing the action space in Deep Q Network
(DQN) encounter issues related to the curse of dimensionality,
others like the Deep Deterministic Policy Gradient algorithm
(DDPG) overcome this challenge by using neural networks to
map system states to actions [25]. However, these methods
adopt a single-stage approach, generating offloading decisions
and optimized phases simultaneously, resulting in suboptimal
solutions and requiring further training iterations.

Our proposed system (as illustrated in Fig. 1) comprises mul-
tiple User Equipment Devices (UEDs), a fleet of UAVs, and an
IRS responsible for enhancing UAVs’ channel capacity and im-
proving MEC network transmission reliability. To address these
challenges, we propose the Iterative Order-preserving Policy
Optimization (IOPO) framework, a novel two-stage deep learn-
ing framework. IOPO effectively determines energy-efficient
binary task offloading allocations for the MEC system and
optimizes the phase shift configurations of the IRS. Compared
to one-stage methods attempting to derive two variables from
a joint probability space, a two-stage method first obtains a
definite offloading decision and then identifies an optimal phase
shift. This approach allows us to effectively approximate the
theoretically optimal solution. The experiments reveal IOPO’s
capability to generate optimal task offloading strategies while
meeting defined constraints, achieving superior optimization
outcomes. Moreover, with an equal number of training iterations,
IOPO produces solutions that are closer to the optimal one. Our
source code can be found at https://github.com/UIC-JQ/IOPO.
The contributions of this paper can be summarized as follows.

e We present a novel MEC system tailored for operation

on the THz communication network. The proposed MEC
system is equipped with an IRS, which is crucial in en-
hancing communication performance within the network.
Additionally, the system is designed to accommodate mul-
tiple UAVs and users.

® In order to streamline the optimization process and im-

prove the efficiency of the MEC system, we propose a
deep learning framework named IOPO. IOPO is designed
to jointly optimize offloading decisions of the multi-user
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multi-uav system and the phase shift of the IRS. As a
result, IOPO eliminates the need to solve complex MINLP
problems, which can be computationally demanding and
time-consuming.

e To facilitate the generation of high-quality offloading de-
cisions, we equip IOPO with a novel policy exploration
unit called Order-Preserving Policy Optimization (OPPO),
specifically designed to search for improved offloading de-
cisions. Experimental results demonstrate the effectiveness
of OPPO in discovering improved offloading decisions,
even in scenarios with a vast solution space. Furthermore,
results show that the integration of OPPO facilitates the
convergence of IOPO towards optimal offloading deci-
sions.

® Simulation results demonstrate [OPO’s impressive capa-
bility in significantly reducing energy consumption, sur-
passing benchmark schemes, including a strong baseline
DDPG [26]. The energy cost is reduced by up to 32.8%
when there are 3 UAVs and 15 users.

The rest of the paper is organized as follows. Section II pro-
vides a comprehensive review of previous studies. In Section I1I,
we introduce the proposed MEC system model and formulate the
data communication within the THz network. Section I'V formu-
lates the optimization problem aimed at minimizing the energy.
The design of the proposed IOPO framework is described in
Section V. Experimental settings are presented in Section VI,
followed by a thorough analysis of the results in Section VII.
Finally, Section VIII concludes the paper by summarizing the
key findings.

II. RELATED WORK

The integration of IRS in THz communication has been
extensively studied in recent works [19], [20], [21], [22], [23].
In [19], [20], the IRS is employed to maximize the sum-rate
performance of THz communications. The studies conducted
in [21], [22] focus on utilizing the IRS to maintain reliable
THz transmission. [23] introduces a comprehensive optimiza-
tion framework that jointly optimizes the UAV trajectory, IRS
phase adjustments, THz sub-band allocation, and power control.
Additionally, recent works [13], [14], [16] have explored the
integration of UAVs and IRS within MEC systems. These studies
emphasize the importance of expanding UAV capabilities and
utilizing IRS to enhance system performance.

To generate offloading allocations for MEC systems, sev-
eral studies employ machine learning algorithms. [27], [28]
applies deep reinforcement learning techniques to determine
optimal task offloading strategies in scenarios involving single
or multiple access points (APs). [29] considers factors such as
channel state information, queue state information, and energy
queue state and introduces a deep Q-learning network to gen-
erate offloading decisions that minimize task execution costs.
Similarly, in [30], a deep Q-learning network is proposed to
maximize the computational performance of energy-harvesting
MEC networks. [31] proposes a deep learning based optimiza-
tion approach to minimize the system energy consumption while
optimizing the positions of ground vehicles and unmanned aerial
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vehicles along with the resource allocation in a hybrid mobile
edge computing platform. Furthermore, [32] focuses on opti-
mizing the phase shift of IRS, UAV computing resources, and
sub-band allocation in a single UAV scenario. [15] introduces
a dueling double deep Q networks (D3QN)-DDPG network for
minimize transmission and computing delays while ensuring
secure transmission. These works demonstrate the effectiveness
of machine learning models in producing high-quality offloading
strategies for MEC systems.

While progress has been made in existing literature, the task
offloading in an IRS-assisted multi-UAV MEC system operating
within the THz network remains unexplored. Specifically, [19],
[20], [21], [22] primarily focuses on enhancing THz network
communication with IRS. However, they do not adequately
address the modeling of MEC systems within the context of
THz networks. Moreover, [23], [24] introduce the utilization
of IRS to improve the efficiency of MEC systems, but their
systems do not tackle the optimization problems associated with
task offloading. In addition, recent works [13], [14], [15], [16],
[27], [28], [29], [30], [31] have utilized convex optimization
techniques and deep learning models to generate offloading
decisions, but these approaches are tailored to the 5G network
context, failing to account for the unique characteristics of THz
communication networks. Lastly, [32] investigates the allocation
of network recourses and computational resources in the context
of THz networks, taking into account the integration of IRS
and UAVs. However, the studied system does not address the
MEC task offloading problem and only involves a single UAV,
thereby failing to model the complexities that arise in systems
with multiple UAVs.

III. SYSTEM MODEL

In this section, we first provide a detailed description of the
components comprising the proposed MEC system and demon-
strate how the MEC system operates in general. Following this,
Section III-B formulates the communication and data transmis-
sion between UAVs and users within the MEC system. Lastly,
Section III-C introduces the steps for computing the total energy
consumed in the MEC system. The frequently used notations are
shown in Table I.

A. The Proposed MEC System

Fig. 1 presents the proposed multi-UAV multi-user MEC
system designed for THz communication networks. The system
comprises a single IRS, U users denoted as U/ = {1,2,...,U},
and M UAVs denoted as M = {1,2,..., M}. Each user is
equipped with a User Electronic Device (UED), which serves
as a local computing server. Each UAV provides full-duplex
communication services to users within a specific area and
is equipped with an MEC server responsible for process-
ing the tasks uploaded by users and transmitting the results
through downlink transmission. We assume that the MEC server
mounted on the UAV is the UAV itself. Additionally, the com-
putation result to be downloaded to the WD is much shorter
than the data offloaded to the edge server and can be neglected.
The scarcity of previous studies indicates the feasibility of this

TABLE I
THE FREQUENTLY USED NOTATIONS IN THIS PAPER

Notation Description

U The number of users

M The number of UAVs

T The length of a time slot

B(n) The allocation matrix of users and UAVs at time slot n

li(n) The location of the first reflector of IRS at time slot n

Iy (n) The location of user w at time slot n

Im (n) The location of UAV m at time slot n

K, The number of reflecting elements along the X-axis

K. The number of reflecting elements along the Z-axis

K Equals to K - K, the total number of reflectors of IRS

du,m(n) Euclidean distance of user v and UAV m at time slot n

hu,m(n) Direct channel gain between user u and UAV m at time
slot n.

Ju,m(n) The IRS assisted channel gain between user v and UAV
m at time slot n

o (n) The phase shift of reflector k£ of IRS at time slot n

Ru,m(n) The transmission rate between user u and UAV m at time
slot n

P (n) The diagonal reflection matrix of IRS phase shifts at time
slot n.

B The communication bandwidth

o? The Gaussian noise

fes fw The input feature vectors represent the energy cost of users
to UAVs and workload of UAVs

P(n) DNN predicted probability matrix at time slot n

H The number of quantized binary offloading decisions

h H binary offloading decisions quantized by OPPO

B*(n) The one yielding the lowest energy cost among the H
candidate offloading decisions generated by OPPO at time
slot n

approach [27], [33], [34], [35]. Compared with the UEDs, the
MEC servers are designed with higher computational capacity.
This empowers users to make decisions regarding task offload-
ing, choosing between offloading their computational tasks to
one of the M UAVs or executing them locally on their UEDs.
Consequently, the task allocation for the entire MEC system can
berepresentedbyal x (M + 1) matrix, where M + 1 signifies
that users choose from M UAVs and their local UEDs. An IRS
comprising K reflecting elements is set to assist the system.
By manipulating the phase shifts of these reflecting elements,
the IRS can reconfigure wireless propagation channels in a
highly efficient manner. This reconfiguration leads to significant
improvements in both the overall propagation environment and
the data transmission speed of the system.

The proposed MEC system operates as follows: at a time
frame n within the system time A ={1,2,...,n,...,N},
each user in the system has a computational task that needs
to be processed. The primary objective is to utilize the available
computational resources, such as UAVs and UEDs, to complete
all users’ tasks within an acceptable time while minimizing the
total energy consumed during task processing. To achieve this
objective, an offloading decision that allocates user tasks to
the appropriate computational resources is required. Initially,
the central server, located at the base station, collects essential
information, such as the locations, computational power of users,
UAVs, etc. Subsequently, the collected information is input into
an offloading decision prediction model, which is discussed in
detail in Section V. This model predicts an offloading allocation
matrix denoted as B(n) € {0,1}V>*(M+1) ' where U represents
the number of users and M represents the number of UAVSs. For

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:10:46 UTC from IEEE Xplore. Restrictions apply.



452

(a,0,c)
4

7 (ko) =k-6tn
; 4

__,Im-UAV 2

(F(n), 75(n), Z,(n))

UAV 1
@), 71(n), z,(n))

0 . X axis

UED 1
(£:(0),9,(n), 0)

UED 2
(%,(n), 9,(n), 0)

UED 3

Y axis (%3(n), 93(n), 0)

Fig. 2. The proposed system includes K reflectors. The first reflector serves
as a reference point and is positioned at (a, 0, ¢).

a given user u, 3, m,(n) = 1 indicates that the corresponding
task is offloaded to UAV m (m < M), and B, m41(n) =1
signifies that the task is processed locally on the user’s UED.
In the proposed system, we assume that when a task is offloaded
to UAVs, it can only be offloaded to a single UAV at a time,
prohibiting simultaneous offloading to multiple UAVs. This
constraint is mathematically expressed as > _ | B, ,,(n) = 1
for each user v € U.

B. Data Transmission in the THz Network

In this section, we elucidate the data transmission within
the THz network. As depicted in Fig. 2, at time frame n,
there are two approaches for transmitting user data and tasks
to UAVs: (i) direct transmission of user data from UEDs to
UAVs, and (ii) redirection of user data to UAVs through the IRS.
Both approaches are employed simultaneously to facilitate data
transmission by the users. According to the Shannon theorem,
the achievable throughput R,, ,,,(n) for user w to transmit data
to the m-th UAV is determined as follows:

o 2
Ru,nb(n) = BlOg2 (1 + p ‘hu,m(n)o——g guym(n)| > , (1)

where h,, ., (n) denotes the channel gain for direct data trans-
mission and gy, (n) is the channel gain of transmitting data
through the IRS. We assume that when multiple UEDs up-
load their tasks to UAVs simultaneously, the available wireless
bandwidth is equally shared among them. Given this setup
and the high transmission speed of the THz bandwidth, it is
reasonable to assume that the transmission time is within the
channel coherence time. This assumption, commonly adopted
in prior works [28], [36], [37], allows each task packet to be
transmitted over a flat fading quasi-static channel. Accordingly,
B represents the channel bandwidth allocated to each UED. p
represents the transmission power provided by the base station
and o2 is a Gaussian noise for modeling random noise that affects
the communication.

In the case of direct data transmission, given the co-
ordinate of user u, denoted as l,(n) = (&y(n),gu(n),0)"

and the coordinate of the m-th UAV, denoted as [,,(n) =
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(Zm(n), Um(n), Zm(n))T, the euclidean distance d,, ,,,(n) be-
tween them can be formulated as: d,, ,,(n) =

V(@ (n) = 2,(n))? + Gm(n) — §u(n))? + 22,(n). ()

Given the distance d,, ., (n), the channel gain for direct trans-
mission A, ., (n) is defined as follows:

hum () = <47rﬂ¢lim(n)) '

exp (_jQT"fgu,m(n) _K(f)Qdu,m(n)> G

where C represents the speed of light, f denotes the frequency
of the sub-band, j is the imaginary unit, and K (f) represents
the absorption coefficient of the transmission medium.

In the context of data transmission via an IRS, the IRS acts as
an intermediary that receives data from the data-sending device
and subsequently reflects the data to the receiver. As depicted in
Fig. 2, the IRS is situated on the X-Z plane and comprises a total
of K = K, - K, reflecting elements. K, and K, represent the
quantities of reflecting elements along the X -axis and Z-axis,
respectively. The coordinates of the reflecting elements in the
IRS are determined based on the position of the first reflecting
element, denoted as [; = (a,0,c)”, which is located at the
lower-left corner of the IRS. Accordingly, the coordinates of
the k-th reflecting element (k = k, + (k, — 1)K.), denoted as
I1,, can be calculated using the following expression:

e = (a+ (ky — 1), 0, c+ (k. — 1)5.)", @

where k, and k, represent the indices of the reflecting element
along the X -axis and Z-axis, respectively. d,, and J, denote the
gaps between the elements along the X -axis and Z-axis.

Itis worth noting that the first element of the IRS is considered
as the reference point. Hence, the distance between the IRS
and communication points like UAVs or UEDs can be approx-
imated by measuring the distance between the reference point
and the corresponding point [24]. Therefore, the transmission
vector from the IRS (approximated to be the first reflecting ele-
ment) to the UAV 1 is represented as A7y, (n) = I, (n) — I} =
(Zm(n) — a, Jm(n), 2(n) — ¢)T. The difference vector between
the first reflecting element and the k-th reflecting element is
defined as A7y, = I, — I} = ((ky — 1), 0, (k. — 1)8.)7. Ac-
cordingly, for signals transmitted to the m-th UAV through the
IRS, the phase difference between the signal reflected by the first
reflecting element and the signal reflected by the k-th element
can be formulated as follows:

s =
07" (n) = 2Cf iFZIAFm(n)
= 2 f Im(n) —a — zZ(n) —c —
= \Amc(( m(n) —a)(ky — 1), + (2(n) — ¢)(k. — 1)5.) .

®)

Similarly, the transmission vector from the first reflecting
element of the IRS to user u can be defined as A#y,(n) =
lu(n) =11 = (#4(n) — a, Gu(n), —c)T and the phase differ-
ence between the signal sent to the user by the first reflecting
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element and the signal sent by the k-th element can be formulated
as follows:

A~T
i) = g A )
= 2 (u(n) — ) (ke — )80 — (ke — 1)5.). (6)
- ‘A’,’:k|c u xr xr z z .

The cascaded channel gain of the UAV-IRS-UED connection
can be defined as:

(n) = N
um i =\ SV, ()
exp <_j27rfdu,m (n) _K(f)du,m(n)> ] 7)

C 2

The variable d, ,,(n) is defined as dy(n) + dm(n). So we
sum the distance between user u and the first reflector of IRS,
denoted by dy(n) = ||A7y(n)||2, and dp,(n) = ||AFm(n)]]2,
which represents the distance between UAV m and the first re-
flector of IRS [23]. Finally, the channel gain for UAV-IRS-UED
data transmission is defined as:

gu,m(n) = gu,m(n) ém(n)T ®(n)eu(n), (®)

m

where &,,(n) = (exp(jO7*(n)),...,exp(j0%(n)7T, é,(n) =
(exp (jvi(n)), ..., exp(jv%(n))?, and & (n) =
diag(exp(jd1(n)),...,exp(jdx(n))) is diagonal matrix of
IRS phase shifts, where ¢ (n) is the phase shift of the k-th
reflecting element.

C. System Energy Consumption

In this section, we formulate the energy consumed in the MEC
system. The energy cost within the system consists of two parts:
(i) the energy consumed by processing user tasks on UEDs and
(i1) the energy consumed by processing user tasks on UAVs.
At a given time frame n, let us consider user u with its cor-
responding task denoted as ¥, (n) = {D,(n), T, (n), Cy(n)}.
Here, D, (n) represents the size of the data, T}, (n) represents the
tolerable latency, and C,, (n) represents the CPU cycles required
to process the task. If the task is processed on the user’s UED
(-e., Bu,m+1(n) = 1), the energy consumed can be defined as:

Eiocal(n) _ tifcal(n> - Dus )

where p,, represents the energy consumed by the UED per CPU
clock and #/°°® () denotes the time required for processing the
user’s task (measured in CPU clock):

thocal(n) = Cy(n)/ Zu, (10)

where 7, refers to the CPU clock speed of the UED. It is
assumed that both Z,, and p,, remain constant over time.

Ifuser u’s task is processed on UAVs (i.e., Y .. o vq Bu,m(n) =
1), the energy consumed during this process can be divided into
two parts: (i) the energy consumed for uploading the task to
UAVs and (ii) the energy consumed during the task processing
on UAVs. The energy consumed in transmitting data from user
u to UAVs is defined as follows:

Elt]cm(n) — tgan(n) . eran7

Y

where p!"*" represents the energy consumed per second and

tiran(n) denotes the transmission time (measured in second):
Dy(n)

>mem Bum(n) - I[Bum(n) = 1]

where I[3,, ,(n) = 1] is an indicator function that takes a value

of 1if By,m(n) = 1, and a value of 0 otherwise.

Regarding the energy consumed in processing user u’s task
on UAVs, it can be defined as:

EP™(n) = Y 0P (n) - po - I[Bum(n) = 1],
meM

tl;ran (n) _

12)

(13)

where p,,, represents the energy consumed by UAV m per CPU
clock, and t$27"P (n) denotes the number of CPU clocks required

to process user u’s task on UAV m.

Cy (n)
Zn Wi (n)
In this context, Z,,, represents the CPU clock speed of UAV m,
while wy, (n) = max(1,3", ., Bu,m(n)) denotes the workload
status of UAV m. The workload refers to the current number of
tasks being processed on UAV m.

Hence, the energy consumption attributed to user u can be
formulated as Bt (n) =

G- (B (n) + B (n)) + (1= G) - B, (n),

where G =1 — By pmr+1(n).
The overall system energy is defined as the aggregate of the
energy consumed by all users within the system:

Etotal(n) — Zueu EZOMZ(TL).

teomp (n) _

um

(14)

5)

(16)

IV. OPTIMIZATION PROBLEM

In the given system time frame n € N, our objective is to
minimize the total energy consumption E'°*(n) of all the
UAVs and UEDs, while considering various constraints. To
simplify the notation, we denote the coordinates of all users and
UAVs in the system as L(n), the CPU clock speed of UAVs and
UEDs as Z(n), and the task information of all users as ¥ (n).
We rewrite the total energy consumed in the system E*°'% (n)
as:

Ewml(n){,ﬁ, ¢|L, v, Z} = Z Efft“l(n){,ﬁ, ¢|L, v, Z}
ueld

A7)
to highlight the dependent variables, where the ‘(n)’ terms
in L(n), ¥(n), Z(n),B(n), ¢(n) are omitted for convenience.
Accordingly, the optimization problem can be formulated as:

Pl: min FE*'%(n){B,¢|L, ¥ Z 18
s (n){B, ¢| ¥ (18)

s.t. Bum(n) € {0,1},Yu e U,m < M + 1, (18a)

M+1

> Bum(n) =1, (18b)

m=1

0<¢r(n) <2m,1<k<K, (18d)

tEomP () 4 iran (n) 4 tlocal(n) < T, (n),Yu € U.  (18f)
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Fig. 3.

The structure of the proposed IOPO Framework. The IOPO framework consists of two processes: offloading decision generation (Steps 1.1 and 1.2)

and offloading decision update (Steps 2.1, 2.2, 2.3, and 2.4). Essential operations of the algorithm encompass generating the system feature, generating offloading

decisions, evaluating offloading decisions, and updating the network.

It means that given {L,W¥,Z}, we want to find the
offloading decision (B(n) and the IRS phase ¢(n)=
{p1(n), p2(n), ..., dx (n)} suchthat the total energy consumed
is minimized. The best offloading decision and the best IRS
phase shifts are denoted as 3°(n) and ¢°(n) respectively. Con-
straints (18a) and (18b) ensure that at the time frame n, each user
is assigned only one task, which can be either allocated to one
of the M UAVs or executed locally on the UED. The Constraint
(18d) guarantees the angle of the k-th reflector of IRS remains
within the range of 0 and 27. Lastly, Constraint (18f) ensures
that the task of user u is completed within the acceptable delay
threshold 77, (n).

Problem P1 presents a formidable challenge as it belongs to
the category of NP-hard mixed-integer non-linear programming
(MINLP) problems. To tackle this challenge, we propose a
two-stage approach. For the first step, we focus on generating
the offloading decision 3" (n). In this study, we introduce a
deep learning-based offloading decision generation model ca-
pable of generating high-quality offloading decisions within
milliseconds. The intricate details of this model are elucidated
in Section V-B. Once the offloading decision 3" (n) is obtained
from the offloading decision model, the subsequent step involves
identifying the phase shifts ¢*(n) for the IRS that minimize the
overall system energy consumption, given the decision 3*(n).
The optimization of IRS phase shifts is explained in detail in
Section V-E and can be formulated as:

P2 ﬁ“; Ettl(n){¢|L, W, Z,B"}, s.t.(18d).

V. THE IOPO FRAMEWORK
A. IOPO Framework Overview

The proposed Iterative Order-Preserving Policy Optimization
(IOPO) Framework, as illustrated in Fig. 3, comprises two

alternating stages: (i) offloading decision generation and (ii)
offloading policy update. In the offloading decision generation
stage, a deep neural network (DNN) offloading decision pre-
diction model denoted as fy is utilized to predict an energy-
efficient task offloading allocation. For the n-th system time
frame (n € N), the DNN takes the input feature [f.(n); fu,(n)]
constructed based on the status of system environment, and
outputs a probability matrix P (n), representing the probabilities
of different offloading allocations that each user may adopt at
time n. The probability matrix is then quantized into H can-
didate offloading decisions within the Order-Preserving Policy
Optimization (OPPO) unit. Among these candidate decisions,
the one yielding the lowest system energy cost is selected as
the predicted offloading decision for the current time frame,
denoted as 3*(n). Subsequently, the generated offloading deci-
sion 3*(n), along with the corresponding input feature vector,
are stored in the experience memory buffer for subsequent DNN
training.

In the offloading decision update stage, a batch of training
samples is randomly selected from the memory buffer to train
the DNN fy, resulting in the update of DNN parameters 6. The
updated DNN is then utilized to produce offloading decisions
in the subsequent system time frames. Detailed descriptions of
these two stages are provided in the following subsections.

B. Offloading Decision Generation

At a system time frame n € N, the input to DNN is a fea-
ture vector [f(n); fu,(n)] formed by concatenating two distinct
feature vectors: f.(n) and f,(n), where ‘[-;:]” denotes the
vector concatenation operator. The first feature vector f.(n) €
R(M+DxU represents the energy costs associated with each of
the U users and their M + 1 offloading options. The second
feature vector f,,(n) € R encodes the CPU clock speed of
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M UAVs. The two feature vectors are concatenated to form
the DNN input feature vector, which possesses a shape of
(M 4 1) x U+ M. The DNN offloading decision model fy
with parameters 6, is a multilayer perceptron (MLP) consisting
of an input layer, six hidden layers, and an output layer. The
activation function employed in both the input and hidden layers
is the hyperbolic tangent (Tanh) function, while the softmax
function is utilized in the output layer. In order to enhance
the model’s generalization capability and mitigate the potential
overfitting issue, a dropout layer [38] is incorporated between
each pair of consecutive hidden layers.

Given the input feature [f.(n); f,,(n)], the DNN predicts
a probability matrix P(n) = {pu,m(n) | pum(n) € [0,1],u €
U,me {1,2,...,M + 1}}. Each element in the matrix holds
a value ranging from O to 1, and the matrix has a dimension
of U x (M + 1). The probability matrix P(n) signifies the
probability of different offloading allocations that each user
may adopt at the system time n. Specifically, the py ., (n)
denotes the probability that user v offloads its task to UAV m,
while p,, ar+1(n) denotes the probability that user w is assigned
to execute the task locally on its UED. This process can be
mathematically formulated as follows:

P(n) = fo ([fe(n); fu(n)])-

The next step is to transform the probability matrix P(n) into
the offloading decision matrix 3(n). To accomplish this, we
first feed the probability matrix into a novel Order-Preserving
Policy Optimization (OPPO) unit, where [ candidate offloading
decisions are generated based on the DNN output. Then, the
candidate offloading decision with the minimum energy cost is
chosen from this set of H decisions to serve as the predicted
offloading matrix 3*(n).

The OPPO unit is derived from the order-preserving opti-
mization method proposed in [27]. The original order-preserving
algorithm generates a set of H candidate offloading decisions,
where the dissimilarity between any two candidate decisions
is maximized. This approach promotes diversity among the
candidate solutions, thereby increasing the chance of identifying
the optimal decision. However, the order-preserving method
described in [27] is specifically designed for systems that consist
of a single MEC infrastructure. As the proposed MEC system
consists of multiple UAVs and users, the original approach is not
suitable. Hence, we modify the order-preserving optimization
algorithm to align with our system configuration, resulting in the
modified approach referred to as OPPO. Specifically, given the
DNN predicted probability matrix P (n) € RV*(M+1)  where
U represents the number of users and M denotes the number
of UAVs in the system, OPPO generates a set of H candidate
offloading decisions, where the hyper-parameter  is a positive
integer chosen from the range of {1,2,...,U x (M + 1)}.

The first candidate offloading decision 3" can be obtained
through the following procedure. For the u-th row of P(n), we
identify the index of the highest probability within that row using
20 = arg max.e(1,2,...,M+1} Pu,z- Subsequently, we set ﬂ}m to
1, while assigning O to the remaining M elements within that

row. Mathematically, this process can be expressed as follows:

1 1 m=zand pym > To,
wm (0 otherwise.

where Top=1/(M + 1). To generate the remaining H — 1
offloading decisions, we begin by arranging all U x (M +
1) elements of P(n) in ascending order based on their
distances from 7. This sorted matrix is denoted as 7 =
{Pi1,P1 25+ Py ary1 }- Here, the element p ; becomes the
h-th threshold denoted as 7, where h = (i — 1) - (M + 1) + 4,
and ¢ and j represent the row and column indices of p;’ ;> respec-
tively. For instance, 71 = p} ; corresponds to the probability
element with the smallest distance to 7. Subsequently, the h-th
offloading decision, denoted as 3" (where h € {2,3,...,H}),
is defined according to three generation rules.

The first generation rule states that for the u-th row of P(n),
if R1={(u,z1) | puz > Th-1,21 €{1,2,...,M +1}} is
not an empty set, then we assign ﬁf}m = 1, while setting the
remaining M values to 0. Mathematically, this can be expressed
as:

hoo_ 1 m=z,
u,m 0 otherwise.

If there are multiple elements in R1, we utilize the first (u, z7)
pair only and omit the remaining elements to meet the constraint
(18b). In the case where R1 is an empty set, we proceed
to apply the second generation rule. Specifically, for the u-th
row of P(n),if R2 = {(u, 22) | Pu.zs = Th-1:Puzs < T0,22 €
{1,2,..., M + 1}} is not an empty set, we assign a value of 1
to b’fjm while setting the remaining elements to 0. This can be
expressed mathematically as:

hoo_ 1 m = 2z,
u,m 0 otherwise.

Again, if there are multiple elements in R2, we only utilize the
first (u, z2) pair and omit the remaining elements. Lastly, in the
scenario where both R1 and R2 are all empty, we employ the
third generation rule, whereby the task is assigned to be executed
locally:

h o ]. m = M + ].,
wm T (0 otherwise.

Upon completion of the OPPO, we obtain a collection of H can-
didate offloading decisions, denoted as {3%, 52, ..., 31 }. Sub-
sequently, we identify the optimal candidate offloading decision
among them, which corresponds to the one that minimizes the
overall system energy cost. This process can be mathematically
formulated as follows:

B (n) = E N ) {8, fwoa(B)|L, ¥, Z},

19)

arg min
ple{pt.p?,...8"}

where E*°*! is (17) and fyroa(-) corresponds to the WOA
method for producing optimized IRS phase shifts (introduced in
Section V-E). Please be noted that, as the OPPO unit can generate
H candidate offloading decisions based on the DNN output, it
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can also be perceived as an effective solution searching unit, in
which offloading decisions with low energy costs are discovered.
Throughout the execution of IOPO, OPPO continuously ex-
plores offloading decisions that are more energy-efficient. These
newly discovered offloading decisions are subsequently utilized
in the offloading policy update procedure to update the DNN
parameters 6.

After obtaining the predicted offloading decision 3*(n),
we employ the function ¢*(n) = fwoa(B8*(n)) to compute
the optimized IRS phase shifts ¢*(n). By substituting 8*(n)
and ¢*(n) into (17), we can evaluate the energy cost of the
system. However, in order to address P1, it is imperative
for the predicted offloading decision B*(n) to align with, or
at least closely approximate, the optimal offloading decision
3°(n) (.e.,B8*(n) = B°(n) or B*(n) =~ B°(n)). To achieve this
alignment, it is necessary to implement an offloading policy
update procedure, which enables the DNN to learn to gener-
ate desired offloading decisions accurately. Furthermore, the
desired offloading decisions utilized in DNN training should
also be gradually improved as the IOPO executes. As a result,
the offloading decisions predicted by the IOPO framework,
which are derived from DNN outputs, exhibit a gradual im-
provement and ultimately converge towards optimal offloading
decisions.

However, during the initial stage of the IOPO execution, the
DNN is not yet adequately trained. As a result, the predicted
offloading decision 3*(n) may exhibit poor quality. Learning
from these low-quality offloading decisions could hinder the
convergence towards optimal offloading decisions, particularly
in systems with a substantial number of UAVs and users (wherein
a poorly performing DNN finds it challenging to predict the
optimal decision among a total of (M + 1)U possible offloading
decisions, with M, U denoting the number of UAVs and the
number of users within the system). To address this issue and
expedite the convergence process, an intuitive approach provides
a favorable starting point for the DNN to learn. Hence, we
introduce an initial reference offloading decision B(n) with
high quality (the generation of this initial reference offloading
decision is elaborated in Section VI-B). At the early stages
of the IOPO execution, 3(n) may exhibit lower energy cost
compared to 3*(n), thereby enabling faster convergence toward
the optimal offloading decisions when learning from B(n) As
the IOPO execution progresses, the DNN gradually improves,
and the predicted offloading decision (3*(n) based on the DNN
output can surpass the initial reference offloading decision.
Consequently, we compare the predicted offloading decision
(3" (n) with the initially provided reference offloading decision
B(n). If the MEC system achieves lower energy costs with 3*(n)
compared to B(n), we update the reference offloading decision
to 3*(n) (i.e., B(n) = B*(n)). This ensures that the DNN can
always learn from high-quality offloading decisions.

Subsequently, we maintain a memory buffer with limited
capacity. At the n-th time frame, a new training data sample
([f(n); fu(n)], B(n)) is added to the memory buffer. When the
memory buffer is full, the newly generated data sample replaces
the oldest one.
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C. Offloading Policy Update

To train the DNN offloading decision model fy, first, we
sample a batch of data pairs, denoted by B, from the memory
buffer, where j € I3 implies the data pair generated in j-th time
frame, ([f.(4); fw(j)], B(j)). is in this batch. Subsequently, the
parameters 6 of the DNN are updated to minimize the average
Maximum Likelihood Estimation (MLE) loss. The MLE loss
for pair j in the training batch B is defined as follows:

U M+1

0G) = =2 > Bum (108 (p(Bum (D L) Fu ()] 6) ).

u=1m=1

where Bum( J) refers to the reference allocation decision of the
datapair j € Band [f.(j); fw(4)] is the input feature associates
with the data pair j € . The average MLE loss for the given
training batch is formulated as:

£B) = 5 2,010

where |B| denotes the batch size. The parameter 0 is updated
using the Adam optimizer [39] and is updated every A IOPO
execution step. By minimizing £, the IOPO-predicted offloading
decisions are refined progressively and eventually align with
optimal offloading decisions (demonstrated in experiment Sec-
tion VII-C). With the optimal offloading allocations produced
and the optimal phase shifts obtained using the WOA algorithm
(introduced in Section V-E), problem P1 can be solved. The
pseudo-code of IOPO is presented in Algorithm 1.

D. Computational Complexity Analysis

As illustrated in Fig. 3, the core processes of the IOPO algo-
rithm involve generating system features, producing offloading
decisions, evaluating these decisions, and updating the network.
First, the system feature, which includes the information on
UAVs and UEDs, is obtained, as shown in (17). The system com-
prises M UAVs and U UEDs, with each UED assigned one task,
resulting in U tasks and a complexity of O(M + 2U). Second,
the probability matrix is computed, followed by the generation of
offloading decisions. The computation of the probability matrix
only requires a forward pass through the network, which is de-
pendent solely on the network size (which is simple in our struc-
ture), and can therefore be considered to have a constant time
complexity [40]. The OPPO unit is responsible for generating
offloading decisions. The quantization process involves a fixed
number of operations, including selecting the largest element
from each user v and finding the index of the highest probability.
This operation requires a maximum search over M + 1 elements
for each user, resulting in a complexity of O(U(M + 1)) =
O(UM). Next, all U x (M + 1) elements are arranged in as-
cending order, which takes O((U(M + 1)) log(U(M + 1))),
simplifying to O((UM ) log(U M)). Then, the remaining H — 1
candidate offloading decisions are generated, each requiring
O(U(M + 1)) = O(UM) operations, leading to a total com-
plexity of O((H — 1) UM ) = O(HU M ). Combining all these
steps, the overall time complexity for generating H candidate
offloading decisions using the OPPO algorithm is O(UM) +
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Algorithm 1: The Execution of the IOPO Framework.

Input : Input feature f(n) = [f.(n); fw(n)] at each
time frame n, and an initial reference
offloading decision 3(n).

Output: Final Offloading decision 3(n) and the best
IRS phase shifts for each time frame n.

Randomly initialize parameters § of DNN fy and

empty the memory buffer.;

forn=1,2,...,N do

Compute the DNN probability matrix:

P(n) = fo([fe(n); fu(n)]);

4 Feed P(n) into OPPO, where P(n) is quantized

into H candidate offloading decisions;

5 Select the best candidate decision 3*(n) using

Eqn. (19);

6 Obtain the best IRS phase shifts ¢*(n) using

¢*(n) = fwoa(B*(n)) as shown in Sec. V-E;

7 if B*(n) is better than the initially provided

reference offloading decision B(n) then

s | | B =p8"(n):

9 end

10 Update the memory buffer by adding (f(n), B(n)),

11 if n mod A =0 then

-

w N

12 Randomly sample a batch B from the memory
butfer as {([f.(7); fu(7)] . BG)) | j € BY;

13 Train the DNN on B and update 6 using the
Adam optimizer;

14 end

15 end

O((UM)log(UM)) + O(HU M), which can be approximated
as O(HUM + (UM )log(UM)). Third, the evaluating com-
plexity using WOA depends on the number of whales W and
the number of evolution round F, the energy cost is com-
puted according to (16), with a given offloading decision, the
complexity is O(U). Here, we must calculate the best among
H candidates’ offloading decisions. Thus, it is O(HW EU).
Without applying OPPO, we would need to consider (M + 1)V
offloading decisions instead of H, significantly increasing the
complexity. These steps are executed sequentially to be com-
pleted in polynomial time.

Moreover, the complexity of updating the MLP network
is dependent on the loop over N times, which involves op-
erations across the network layers. Sampling a batch from
the memory buffer every A time is O(|B]). Training the
DNN on the batch using the Adam optimizer is O(|B|LD),
where £ is the number of the layers and D is the ele-
ment of every layer of the network. The MLP backward pass
can be treated as matrix multiplication with a complexity
of (N/1)O(|B|LM). Therefore, the overall time complex-
ity can be approximated as O(N(M +2U)+ N(HUM +
(UM)log(UM)) + N(HWEU) + (N/1)|B|LD). In this set-
ting, with most parameters fixed, the time complexity is primar-
ily determined by the neural network structure and the number
of training iterations.

E. IRS Phase Shifts Optimization

Given the offloading decision 3*(n), the determination of
the optimal IRS phase shifts shown as Problem P2 is a non-
convex optimization problem. To address this, we follow [32] to
employ the Whale Optimization Algorithm (WOA) [41]. WOA
is commonly employed to tackle optimization problems such
as resource allocations in wireless networks and beyond [42].
In our approach, the WOA algorithm ¢*(n) = fwoa(B*(n))
takes an offloading decision 3*(n) as input and produces the
best IRS phase shifts ¢*(n) through € = {1,2,..., E'} evolu-
tion rounds, where the hyper-parameter E determines the total
number of evolution rounds. Initially, the whale population is
represented as @' (0) = {@/(0), 95(0), ..., ¢4 (0)}, where the
hyper-parameter 1/ determines the number of whales in the
environment. The j-th whale, denoted as ¢’;(0), is a randomly
generated IRS phase shift. During the ¢-th evolution round
(t € &), the following operations are performed. First, we obtain
the best IRS phase shift that minimizes the system energy cost.
This process can be mathematically formulated as:

PL(t) = Bl (n){¢/|L, ¥, Z, B},

arg min
¢ el (t-1)UeL(t-1)}

where Ef°tel(n){-} is (17), ¢.(t) denotes the global optimal
phase shifts selected in the preceding ¢ iterations. In the case
of ¢t = 1, we initialize ¢, (0) as an empty set, since the global
optimal phase shift has not been determined yet. Subsequently,
the WOA algorithm employs a balanced probability of 50% to
perform either a “spiral route” update or a “shrink-wrap” update.
In the event that a “spiral route” update is chosen, the j-th whale
within the whale population (i.e., the j-th candidate IRS phase
shifts) undergoes the following update procedure:

D = abs(¢/.(t) — ¢;(t = 1)),

#(t) = abs(D - P - cos(2m - 1;(1)) + ¢ (¢ — 1)),

where abs(-) denotes the element-wise absolute function, b is
a constant with a value of 1, and [;(t) denotes the behavior of
the j-th whale during the ¢-th evolution, which is a random real
value between [—1, 1].

In the case of selecting a “shrink-wrap” update, an additional
condition check is necessary to determine whether the whale en-
gages in exploration or exploitation. Specifically, if the condition
abs(A;(t)) < 1is satisfied, an exploitation step is performed.
Conversely, if abs(A;(t)) > 1, an exploration step is conducted.
Here, A;(t) = a;(t) - (27;(t) — 1), where a;(t) = 2- (1 — &)
is a scalar that decreases as ¢ increases, and r; (t) is arandomly
generated real value in the range of [0, 1].

In the Exploitation phase, the update rule for the j-th whale
can be expressed as follows:

D = abs(C;(t) - ¢.(t) — ¢(t — 1)),
@;(t) = abs(¢.(t) — A;(t) - D),
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where C}(t) = 2-r;(t). In the Exploration phase, the update
rule for the j-th whale can be defined as:

D = abs(Cy(t) - pj*"(t) — ¢t — 1)),
¢;(t) = abs(¢;"(t) — A;(t) - D),

where qb;‘md(t) represents a randomly generated IRS phase
shifts. Upon completing all F iterations, the resulting IRS phase
shifts ¢, (FE + 1) is returned as the final output of WOA.

VI. EXPERIMENTAL SETTINGS
A. Simulation Setup

In conducted experiments we inspired by [19], [32] to set
users and UAVs are confined within a rectangular area measuring
800 meters in length and 600 meters in width. The locations of
users and UAVs are randomly generated within the designated
area, with the UAVs flying at a height of 20 meters. The CPU
clock speed of MEC servers carried by UAVs, denoted as Z,,,, is
distributed between 0.08 and 0.4 GHz. In contrast, the CPU clock
speed of UEDs Z,, ranges from 0.04 to 0.08 GHz. The transmis-
sion frequency range from 200 to 400 GHz aligns with the THz
characteristics outlined in [43] and the molecular absorption
coefficients for THz frequencies as indicated in reference [10].
The IRS is composed of 25 reflectors, with the first element
located at (4 m, 0 m, 4 m), and K, = 5, K, = 5. The task size
of each user ranges from 32 bytes to 100 KB. The time that users
finish their tasks locally is set as the acceptable delay threshold.
Any processing time that is longer than this threshold fails to
meet Constraint (18f) and is considered as overdue.

B. The Execution of IOPO

We execute IOPO for N = 200,000 system time frames,
during which the DNN offloading decision model fj is trained
in a supervised manner. The initial reference offloading decision
is generated using the GREEDY OC method (introduced in Sec-
tion VI-C) and the training interval A is set to 10, indicating that
the DNN parameters 6 are updated every 10 IOPO execution
steps. Furthermore, we utilize a batch size of 256, a dropout
rate of 0.1 to mitigate overfitting, a memory buffer size of 1.5
times the batch size, and a learning rate of 0.001in the Adam
optimizer. During the execution of IOPO, we set the number
of candidate decisions generated in OPPO as H = 20. In order
to guide OPPO towards identifying decisions that satisfy the
no-overdue constraint (defined in (18f)), we introduce an over-
due penalty to candidate offloading decisions involving overdue
users. Each overdue user adds a penalty score of 100 to the
total system energy cost. This prioritizes candidate decisions
without overdue users during the selection of the best candidate
offloading decision. For the WOA method, the number of whales
W is set as 3, while the evolution round F is set as 5.

Following the completion of IOPO execution, we conducted
a series of experiments to evaluate its performance compared to
several offloading decision-generation baselines. These exper-
iments are carried out over the last 1,000 system time frames
and the average metrics (e.g., system energy costs, overdue
statistics) are reported. To calculate the system energy costs
of different methods, we first acquire a predicted offloading
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decision from each of the considered offloading decision models.
Subsequently, we employ the WOA method denoted as fiyoa ()
to derive optimized IRS phase shifts. The optimized IRS phase
shift and the obtained offloading decision are substituted into
(17), yielding the total energy cost of different offloading deci-
sion generation methods.

C. Comparison Offloading Decision Generation Methods

We compare the performance of the proposed IOPO model

with baseline offloading allocation approaches as follows:

® Deep Deterministic Policy Gradient Algorithm (DDPG):
A model-free reinforcement learning algorithm based on
actor-critic architecture. DDPG [26] can be used to gen-
erate policies from continuous action spaces. As a strong
baseline of one-stage methods, for each time frame, DDPG
takes the encoded environment feature as input and then
generates an output vector that contains both the offloading
decision and the optimal IRS phase.

® Greedy Selection (Greedy): This method utilizes a greedy
approach to assign users to UAVs. Specifically, the algo-
rithm iteratively selects the user with the longest local pro-
cessing time and assigns it to the UAV with the fastest pro-
cessing speed. After each assignment, the computational
speeds of UAVs are updated based on their workload status.
This process continues until the fastest UAV processing
speed is slower than the slowest local computational speed
among the remaining users. The remaining unassigned
users finish the tasks locally.

® Greedy Selection with no-overdue constraint (Greedy OC):
Similar to the Greedy method, users are ranked based on
their local processing times. However, instead of directly
assigning each user to the fastest UAV, a more involved
iterative process is performed. This process considers all
UAVs and selects the UAV that can complete the user’s
task with the lowest energy cost while ensuring that the
time constraints (18f) of all users on that UAV are met. If a
suitable UAV cannot be found, the user is assigned to local
processing.

® Local Computing (LOCAL): Users independently process
tasks on their UEDs without using UAV resources.

e Optimized Random Selection (OPT RANDOM): Users are
randomly assigned to either local processing or UAV pro-
cessing. 10 offloading decisions are randomly generated,
and the decision with the lowest energy cost is selected as
the final offloading decision.

® Optimized Random Edge Selection (OPT RANDOM w/o
LOCAL): Users are randomly assigned to UAVs for task
processing. In this case, no user performs tasks locally.
Again, 10 offloading decisions are randomly generated,
and the decision with the lowest energy cost is chosen.

VII. EXPERIMENTAL RESULTS

A. Model Performance Given Different Numbers of Users

In this experiment, we assess the proposed IOPO model in
systems with varying numbers of users. The number of UAVs in
systems is fixed at 3. The energy costs of offloading decisions
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TABLE II
OVERDUE STATISTICS GIVEN DIFFERENT NUMBERS OF USERS IN THE SYSTEM

10 USERS 15 USERS 20 USERS
Methods O Plan% Avg #0 Users O Plan% Avg #0 Users O Plan% Avg #0 Users
Baselines
“LocaL o o | 0o 0 | o o
GREEDY (OC) 0 0 0 0 0
GREEDY 81.76% 1.27 100% 12 100% 12.39
OPT RANDOM 82.46% 3.34 99.94% 8.83 100% 14.49
OPT RANDOM
(W/0 LOCAL) 97.94% 4.44 100% 11.91 100% 17.41
DDPG 67.90% 2.31 100% 5.48 100% 8.59
Ours
‘o0 086% 136 |  06% 194 | e 6.88% 166

O plan% is the proportion of offloading decisions that contain overdue users and avg #o users is the average number of overdue users in overdue offloading decisions.

TABLE III
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF USERS
IN THE SYSTEM (WITH OVERDUE PENALTY = 100)

TABLE IV
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF USERS
IN THE SYSTEM (WITHOUT OVERDUE PENALTY)

Methods 10 Users 15 Users 20 Users Methods 10 Users 15 Users 20 Users
Baselines Baselines

" Loca 104877 167627  2062.25 “LocAaL 104877 167627  2062.25
GREEDY (OC) 508.64 1011.89 1384.11 GREEDY (OC) 508.64 1011.89 1384.11
GREEDY 451.66 1791.93 2030.92 GREEDY 347.48 591.92 791.24
OPT RANDOM 647.64 1540.31 2221.74 OPT RANDOM 372.08 657.75 771.82
OPT RANDOM (W/0O LOCAL) 737.47 1728.55 2343.66 OPT RANDOM (W/0 LOCAL) 301.75 537.17 601.82
DDPG 444.96 1225.47 1640.17 DDPG 290.16 677.96 781.17
Ours Ours

“JoPO 39772 82332 124798 “JoPO 39018 81938 121152

predicted by different offloading decision models are presented
in Table III. It is observed that the predicted offloading decisions
include users who fail to meet their acceptable delay threshold
(i.e., fail to meet the Constraint (18f)). As the ideal offloading
decisions should minimize energy costs while satisfying the
no-overdue constraint (18f), we introduce an overdue penalty to
offloading decisions containing overdue users. Specifically, each
overdue user adds a penalty score of 100 to the overall system
energy cost. By incorporating this overdue-penalized energy
cost metric, we are able to evaluate the offloading decisions
in terms of both energy costs and the occurrence of overdue
users. The results presented in Table III demonstrate that, in
comparison to the baselines, the proposed IOPO model achieves
the lowest overdue-penalized energy costs across all system
configurations. This highlights the effectiveness of IOPO in
generating offloading decisions that not only minimize energy
consumption but also adhere to the no-overdue constraint (18f).

To gain deeper insights into the overdue situations in offload-
ing decisions generated by various methods, we present the
overdue statistics in Table II. The term O Plans% represents the
percentage of model-predicted offloading decisions that include
overdue users, while Avg #0O Users signifies the average number
of overdue users within these overdue decisions. The results
reveal that, except for LOCAL and GREEDY (OC), all baseline
methods generate a considerable number of offloading decisions
containing overdue users. Although LOCAL and GREEDY
(OC) adhere to the no-overdue constraint, they fail to fully

harness UAV resources to generate energy-efficient offload-
ing decisions (as depicted in Table IV, wherein the overdue
penalty is excluded from the system energy cost computation).
Consequently, none of the baseline methods can be considered
preferable. In contrast, the proposed IOPO framework exhibits
the ability to generate offloading allocations with lower en-
ergy costs (in comparison to LOCAL and GREEDY (OC))
while significantly reducing the number of overdue users (in
comparison to GREEDY, DDPG, and random methods). These
findings underscore the effectiveness of the proposed methods
over baselines.

B. Model Performance Given Different Numbers of UAVs

In this experiment, we evaluate IOPO in systems with varying
numbers of UAVs. The number of users in the system is fixed at
20 and the overdue-penalized energy costs of different methods
are reported. Table VI illustrates the overdue-penalized energy
costs resulting from offloading allocations generated by different
methods. Results show that IOPO consistently outperforms all
baseline methods across different system configurations. This
underscores IOPO’s ability to yield energy-efficient offloading
decisions while satisfying the overdue constraint in diverse
system setups. Further insights into the overdue statistics are
provided in Table V. Once again, the results affirm that IOPO
surpasses the baselines GREEDY, DDPG, and RANDOM, while
achieving comparable performance to LOCAL and GREEDY
(OC) in meeting the no-overdue constraint (18f).
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TABLE V
OVERDUE STATISTICS OF METHODS GIVEN DIFFERENT NUMBERS OF UAVS
3 UAVS 4 UAVS 5 UAVS
Methods O Plan% Avg #0 Users O Plan% Avg #0 Users O Plan% Avg #0 Users
Baselines
“LocaL o o 0o "0 | 0o T o
GREEDY (0OC) 0 0 0 0 0
GREEDY 100% 12.39 100% 16.71 100% 6.07
OPT RANDOM 100% 14.49 100% 12.49 99.90% 9.24
OPT RANDOM
(W/0 LOCAL) 100% 17.41 100% 15.56 100% 11.52
DDPG 100% 8.59 100% 5.99 100% 4.07
Ours
“jop0 688% 166 | 624% ot | 680% .86

O plan% denotes the proportion of offloading decisions that contain overdue users and avg #o users denotes the average number of overdue users in overdue offloading decisions.

The number of users in the system is set to 20.

TABLE VI
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF UAVS IN THE
SYSTEM (WITH OVERDUE PENALTY = 100)

Methods 3UAVs 4UAVs SUAVs
Baselines

" LocaL 2062.25 2078.15 177939
GREEDY (OC) 1384.11  1194.84  1009.61
GREEDY 2030.92  2235.64  1322.54
OPT RANDOM 2221.74  1874.64  1646.52
OPT RANDOM (W/0 LOCAL)  2343.66 2064.96 1800
DDPG 1640.17 1111.7 1038.98
Ours

“jor0 1247.98 105953  929.15

The number of users in the system is set to 20.

C. How Good is the Predicted Offloading Decision Compared
to the Optimal Decision?

In this experiment, we compare the offloading decisions pre-
dicted by IOPO with the optimal offloading decisions. Optimal
offloading decisions are determined by considering all possible
allocations and selecting the one that minimizes the energy cost
while satisfying the no-overdue constraint. We evaluate the per-
formance of IOPO in systems containing (5, 7) users and (1, 2)
UAVs. To assess the similarity between the predicted decisions
and optimal decisions, we introduce a proximity ratio. This ratio
is calculated by dividing the average energy cost of optimal
decisions by the average energy cost of predicted offloading
decisions. An ideal scenario is indicated by a ratio of 1, sig-
nifying that the model-predicted offloading decisions perfectly
match the optimal offloading decisions. A ratio smaller than 1
suggests that the energy costs of predicted offloading allocations
exceed the optimal energy costs. Therefore, a ratio close to one is
desirable, as it indicates a close alignment between the predicted
decisions and the optimal decisions. Fig. 4 demonstrates the
proximity ratio of IOPO along with 6 baselines under various
system settings. Notably, IOPO consistently outperforms all
comparison methods, maintaining a proximity ratio close to 1
across all (user, UAV) configurations. These results substantiate
that the IOPO-predicted offloading decisions can converge to
optimal offloading decisions.

It should be noted that as the number of users and UAVs
in the system increases, the number of possible offloading

3 1or0
B DDPG
ESN Greedy
[ZA Greedy (OC)
ZZ1 OPT RANDOM (W/O LOCAL)
00 EXI OPT RANDOM
F0 T )98 —.— B LOCAL e 099
L
-
0.8 7
2
2
0.6 —
N 7
0.4 %
0.24

G, ¢.2)
Setting Format: (Number of User, Number of UAVs)

(7.2)

Fig. 4. Average proximity ratio of methods over the last 1,000 time frames.

decisions grows exponentially. For instance, in a system with
5 UAVs and 20 users, the total number of potential offloading
decisions amounts to (5 + 1)2°. This exponential growth makes
it impractical to obtain optimal allocations for complex system
setups within a reasonable time. Consequently, we focus the
investigations on systems with a limited number of users and
UAVs. While we do not present optimal solutions for intricate
system setups, we observe that increasing the total number of
IOPO iterations yields a further reduction in the overall system
energy cost. This finding implies that for systems encompassing
only a small number of users and UAVs, the IOPO model can
converge towards optimal offloading decisions with a relatively
small number of IOPO iterations. Conversely, for complex sys-
tems involving a larger number of users and UAVs, IOPO neces-
sitates a greater number of iterations to approximate the optimal
solution. Therefore, when confronted with systems entailing a
significant number of users and UAVs, it is recommended to
employ a larger number of iteration steps to attain enhanced
outcomes.

D. Ablation Study: How OPPO Affects IOPO Performance

This experiment aims to assess the impact of the proposed
OPPO unit on the performance of IOPO. The experimental
settings include a penalty of 100 for overdue tasks, 20 users, and
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3 UAVs. The evaluation of two variants is based on the average
energy cost observed over the last 1,000 system time slots.
The two variants considered are IOPO with and without OPPO,
taking into account scenarios with the unit disabled during the
execution of IOPO and without being disabled. When OPPO is
disabled, an alternative approach is needed to quantize the DNN
output probability matrix into the offloading decision matrix. To
address this, at the n-th time frame, given the DNN predicted
probability matrix P (n) € RV*(M+1) foreach user u € U, we
assign a value of 1 to the offloading choice with the largest
probability and a value of O to the remaining M choices. The
resulting offloading decision matrix 3(n) satisfies Constraints
(18a) and (18b). Formally:

/

Z = argmax Py,

ze{1,2,...,M+1}

Bumlr) = {

The energy cost of IOPO with OPPO is 1247.98, whereas
without OPPO is 1408.36. This demonstrates that the inclusion
of OPPO significantly reduces the overdue-penalized system
energy cost when compared to the variant without OPPO.

Besides, we analyze the impact of removing OPPO on overdue
cases in IOPO. Surprisingly, IOPO without OPPO outperformed
IOPO with OPPO, significantly reducing overdue decisions and
users. With OPPO, there was a 6.88% occurrence of overdue
plans, compared to 0.94% without OPPO. Moreover, despite
higher penalties, [OPO with OPPO achieved lower energy costs
for overdue tasks than the variant without OPPO. The reason
behind these findings can be attributed to the challenge lies in
creating efficient offloading allocations using UAV computa-
tional power while adhering to the no-overdue constraint. The
variant without OPPO showed limited user offloading to UAVs,
while the variant with OPPO underutilized UAV capabilities.
IOPO systematically improved initial decisions with OPPO,
leading to more overdue cases with a slight increase in users per
UAV. Still, IOPO had fewer overdues, achieving lower energy
costs despite predicting more overdue cases.

During IOPO execution, OPPO continually explored im-
proved decisions, generating 127,966 during 200,000 iterations.
The DNN learned from these decisions, reducing the overdue-
penalized energy cost to 1247.98 compared to 1384.57 for initial
decisions. Notably, the initial offloading decisions, generated
using the Greedy method with a no-overdue constraint, didn’t
have overdue users. The decrease in energy cost resulted from
OPPO’s ability to optimize task distribution between users and
UAVs. In summary, results demonstrate the efficacy of OPPO
in generating a substantial quantity of improved offloading
decisions and reducing the system energy costs.

1 m=2,
0 otherwise.

E. Does the Initial Reference Offloading Decision Help?

In this experiment, we study if applying initial reference
offloading decisions benefits the performance of IOPO. The
introduction of initial offloading decisions aims to establish a
favorable starting point for training the DNN in IOPO. Without
the provision of initial reference offloading decisions, the DNN

15001 ZZ 10PO

ESN 10PO (W/O INITIAL REF)

anldd

(10, 3) (15,3) (20, 3) (20,4) (20, 5)
Setting Format: (Number of User, Number of UAVs)

Energy Cost

Fig.5. 1OPO performance with and without utilizing initial reference offload-
ing decisions during the training of DNN. The overdue penalty is set to 100 in
system energy cost computation.

may learn from suboptimal offloading decisions during the early
stages of IOPO execution, thereby slowing the convergence
towards optimal offloading allocations and resulting in im-
paired IOPO performance. This issue could become particularly
pronounced when dealing with a large solution space due to
the increasing difficulty in identifying high-quality offloading
decisions for training the DNN. Consequently, the inclusion of
initial reference offloading allocations can play a critical role in
guiding the training of DNN and reducing the energy costs of
IOPO-predicted offloading decisions.

Fig. 5 presents the average overdue-penalized energy costs
over the last 1,000 system time frames. When the initial reference
offloading decisions are not provided during DNN training,
we set the predicted offloading decisions generated using (19)
as reference to offloading decisions. Results demonstrate that,
compared to the variant JOPO (W/O INITIAL REF), in which
initial reference offloading decisions are excluded in DNN train-
ing, IOPO can produce offloading decisions with lower energy
costs. These findings align with the intuition and emphasize the
significance of supplying high-quality initial reference decisions
during DNN training to achieve reduced system energy con-
sumption.

F. Does DNN Complexity Affect IOPO Performance?

In this experiment, we study the influence of DNN complexity
on the performance of IOPO. Table VII presents the performance
of IOPO equipped with two DNNs: the proposed DNN (Ours)
and a DNN with reduced complexity (Simplified). Compared
to Ours, the downgraded network consists of 1 hidden layer
instead of 6 and 64 hidden units instead of 256. Results in-
dicate that the downgraded DNN (Simplified) exhibits higher
overdue-penalized energy cost (Eng Cost) in all tested settings
compared to the sophisticated DNN (OQurs). This outcome can
be attributed to the subpar performance of the simplified DNN in
producing high-quality probability matrices. As the offloading
decisions predicted by the IOPO are derived from the DNN
probability matrix, sub-optimal probability matrices generated
from Simplified result in predicted offloading decisions that incur
higher energy costs. Moreover, a reduced number of improved
offloading decisions discovered by OPPO (#Improved) is ob-
served in the downgraded model. These findings suggest that
DNN complexity has a significant impact on the final system
energy cost and the performance of OPPO searching.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:10:46 UTC from IEEE Xplore. Restrictions apply.



462

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 1, JANUARY 2025

TABLE VII

MODEL PERFORMANCE AND OPPO STATISTICS WITH DIFFERENT DNN COMPLEXITY (OVERDUE PENALTY IS 100 IN SYSTEM ENERGY COST)

10 USERS 3 UAVS 15 USERS 3 UAVS 20 USERS 3 UAVS 20 USERS 4 UAVS 20 USERS 5 UAVS
Metrics Ours Simplified Ours Simplified Ours Simplified Ours Simplified Ours Simplified
Eng Cost 393.34 424.43 841.49 912.33 1233.76 1306.16 1047.57 1118.58 953.45 1044.69
#Improved 146505 102555 143939 105877 126177 102803 122078 101471 115477 85720
1800 1900
Memory size = 0.5 x batch size A\ —— Training interval = 1
17004 Memory size = 1 x batch size 1800 \ —— Training interval = 5
Memory size = 1.5 x batch size \ —— Training interval = 10
Memory size = 2 x batch size 1700 1 —— Training interval = 20
z 1600 1 Memory size = 4 x batch size z \\ Training interval = 50
; Memory size = 8 x batch size ; 1600 1 Training interval = 100
&6 1500 o0
5 & 1500
=] =]
s3] s3]
14004 N e 14004
1300 1300
1200 +— , . . , , . : 12000 : ; ; ; ; ; ;
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Time Frames Time Frames
Fig. 6. Impact of memory buffer size on system energy cost. Each time frame  Fig. 7. Impact of Training Interval size on energy cost. Each time frame

represents the average energy costs of over 25,000 IOPO execution steps.

TABLE VIII

IOPO PERFORMANCE WITH DIFFERENT MEMORY SIZES
(WITH OVERDUE PENALTY = 100)

Memory Size Eng Cost #Improved
0.5 batch size 1256.82 121689
1 batch size 1232.28 131871
1.5 batch size 1253.76 124038
2 batch size 1273.86 121413
4 batch size 1285.07 117858
8 batch size 1294.34 111396

G. Model Analysis: Memory Buffer Size

In this experiment, we investigate the influence of memory
buffer size on the performance of IOPO. The number of users
in the system is set to 20, and the number of UAVs is set to 3.
Fig. 6 shows the overdue-penalized energy costs of offloading
decisions predicted by IOPO during the entire IOPO execution.
The REF horizontal line represents the average energy cost of the
initially provided reference offloading decisions. As depicted in
Fig. 6, IOPO with various memory sizes outperforms the REF
offloading decisions as the iteration progresses. This improve-
ment is attributed to the OPPO unit in IOPO, which can discover
offloading decisions with low energy costs as the IOPO execu-
tion progresses. Moreover, IOPO with a memory size equal to
the batch size demonstrates the lowest energy cost by the end of
IOPO execution, compared to other memory size configurations.
To provide a comprehensive understanding of the impact of
memory size, Table VIII presents the average overdue-penalized
energy costs (Eng Cost) over the last 1,000 system time frames
and the number of IOPO-predicted offloading decisions that sur-
pass the initially provided reference offloading decisions (#Im-
proved). Results indicate that the optimal IOPO performance is
achieved when the memory size aligns with the batch size, with
the lowest test energy cost recorded as 1232.28 and the largest
number of improved allocations discovered as 131,871. These

represents the average energy cost of over 25,000 IOPO execution steps.

findings highlight the significance of aligning the memory size
with the size of training batches for optimal IOPO performance.

When considering alternative memory sizes, we observe
slightly higher system energy costs and smaller numbers of
offloading decisions discovered compared to the optimal con-
figuration. Additionally, as the memory size becomes larger,
the overall energy cost increases. This phenomenon can be
attributed to the difficulty of sampling the most recently im-
proved offloading decisions from a substantial historical pool
when training the DNN. As a result, the DNN may acquire
knowledge from sub-optimal historical data, leading to com-
promised performance and heightened energy consumption in
IOPO-predicted offloading decisions.

H. Model Analysis: Training Interval

In this experiment, we examine the impact of the size of the
training interval A on the performance of IOPO. The number
of users in the system is set to 20 and the number of UAVs is
set to 3. Fig. 7 illustrates the overdue-penalized energy cost of
IOPO-predicted decisions and REF denotes the average energy
cost of the initial reference offloading decisions.

As shown in Fig. 7, IOPO with different training interval sizes
(1, 5, 10) can yield offloading decisions with similar and low
energy costs after IOPO execution. When the training interval
size is increased to 50 and 100, the resulting decisions exhibit
higher energy costs. Moreover, the energy costs of IOPO with
training intervals 50 and 100 are closer to the horizontal REF
line, indicating a compromised performance of the OPPO unit
in discovering improved offloading decisions when the training
interval is large. This is because, with large training intervals, the
parameters 6 of the DNN offloading decision model fy are up-
dated less frequently. Consequently, the accuracy of the DNN is
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TABLE IX
IOPO PERFORMANCE WITH VARIOUS TRAINING INTERVALS
(WITH OVERDUE PENALTY = 100)

Training Interval Eng Cost #Improved
1 1196.84 144841
5 1203.57 137763
10 1253.76 124038
20 1277.90 118099
50 1324.63 863867
100 1370.78 50734

compromised, causing the predicted offloading decisions, which
rely on the DNN-output probability matrix, to be impaired.

Table IX demonstrates that the lowest system energy cost
achieved is 1196.84, and the largest number of improved de-
cisions discovered is 144841, both obtained when the training
interval is set to 1. This is because a small training interval
facilitates the update of DNN parameters and the improvement
of DNN performance. With the continual improvement of the
DNN, there is a corresponding enhancement in the IOPO-
predicted offloading allocations that depend on the DNN’s per-
formance. Subsequently, the DNN learns from these improved
offloading decisions, leading to further enhancements in its own
performance and a reduction in energy costs of IOPO-predicted
decisions. However, it is important to note that using a smaller
training interval may result in slower system speed due to the
increased frequency of DNN parameter updates. If execution
speed is a primary concern, it is reasonable to consider setting
the training interval to 5 or 10, as these interval sizes yield energy
costs that are close to the energy cost achieved with a training
interval of 1.

1. Model Analysis: Impact of IRS

In this experiment, we explore the influence of IRS on
both data transmission speed and system energy consumption.
Specifically, we conduct a comparative analysis involving the
proposed IOPO framework against three distinct variants: (i)
NO IRS, wherein the IRS board is excluded; (ii)) IOPO (ZERO
PHASE), denoting a configuration where the phase shift of all
IRS reflecting elements is set to 0; and (iii)) [OPO (RANDOM
PHASE), where the phases shift of IRS reflecting elements are
randomly assigned.

As depicted in Fig. 8(a), shows that IOPO consistently
achieves superior data transmission speeds when compared to
all three variants. Fig. 8(b), the removal of IRS from the system
is observed to result in escalated energy consumption. Results
demonstrate the efficacy of the IRS in reducing system energy
consumption while augmenting data transmission rates. More-
over, IOPO consistently demonstrates reduced energy costs
compared to both IOPO (RANDOM PHASE) and IOPO (ZERO
PHASE) configurations in scenarios involving (15 users and 3
UAV5s) and (20 users and 3 UAVs), while maintaining compara-
ble energy consumption across other settings.

The trend of the lines in Fig. 8(b) indicates an increase in
energy cost up to the point of (20 users and 4 UAVs). This is
because the UAVs function as MEC servers. When the number of
users increases while the computing resources remain constant,
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R T T T
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(b) System Overdue-Penalized Energy Cost

Fig. 8. Impact of IRS on system energy and data transmission speed. The
z-axis denotes (the number of users, and the number of UAVs) in the system.

the total system cost rises. The increased user demand for the
same resources leads to a higher average task allocation per
UAV, resulting in higher energy costs. Adding more UAVs after
this point alleviates the system’s computing burden and reduces
energy costs.

Although the energy consumption differences might appear
less significant at certain points, [OPO consistently demonstrates
superior energy efficiency in most scenarios, making it a more
stable optimization than other variants. The less noticeable
differences are due to the high transmission speeds under the
THz network. Once the speed reaches a certain threshold, further
improvements have a less pronounced effect on latency. At the
point of (20 users and 3 UAVs), when resources are scarce, the
benefits of optimizing IRS phase shifts to enhance channel gain
become more apparent. In conclusion, the results highlight the
advantages of incorporating IRS and optimizing its phase shift
using IOPO over simplistic configurations such as uniformly
zeroed or randomly assigned phase shifts.

VIII. CONCLUSION

In this study, we investigate the task offloading problems in
a multi-user multi-UAV MEC system that integrates an IRS
and operates on the THz communication network. We present
the modeling of the task offloading and the task processing
procedure of the MEC system within the THz network and in-
troduce IOPO, a novel deep learning-based framework designed
to optimize the energy efficiency of task offloading decisions
and the phase shifts of the IRS. The IOPO framework can
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generate satisfactory offloading decisions within milliseconds
and is incorporated with a novel offloading decision-searching
unit OPPO, enabling continuous search to identify improved
offloading allocations. Extensive experimental results demon-
strate the superiority of IOPO over baseline methods in gener-
ating energy-efficient offloading allocations and meeting task
deadlines.

In the future, several directions exist to extend this work. First,
the algorithm’s performance can be trained and evaluated in a
realistic system (e.g., real THz data transmission environments,
practical UAV energy losses, and real-world computational
tasks) to improve the algorithm’s robustness and applicability
in practical scenarios. Second, the IOPO’s performance can
be further enhanced by optimizing the second-stage algorithm.
Third, the proposed model can be extended to multiple base
stations, encompassing wider areas and more UAVs and UEDs.
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