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Abstract—As mobile devices proliferate and mobile applications diversify, Mobile Edge Computing (MEC) has become widely adopted
to efficiently allocate computing resources at the network edge and alleviate network congestion. In the MEC initial phase, the absence
of vital information presents challenges in devising task-offloading policies, and identifying malicious devices responsible for providing
inaccurate feedback is complex. To fill in such gaps, we introduce a consortium blockchain-enabled Committee Voting based Task
Offloading Model (CVTOM) to collaboratively formulate resource allocation policies and establish deterrence against malicious servers
producing erroneous results intentionally. Different voting principle mechanisms of each committee member are first designed in a
Blockchain-enabled system which helps to represent the system’s resource status. Additionally, we propose a Multi-armed Bandits
related Thompson Sampling based Adaptive Preference Optimization (TSAPO) algorithm for task-offloading policy, enhancing the timely
identification of potent edge servers to improve computing resource utilization which first considers dynamic edge server space and
parallel computing scenarios. The solid proof process greatly contributes to the theoretical analysis of the TSAPO. The simulation
experiments demonstrate the delay and budget can be reduced by around 25% and 10% respectively, showcasing the superior
performance of our approach.

Index Terms—Mobile Edge Computing, Blockchain, Task-offloading, Multi-armed Bandits.

✦

1 INTRODUCTION

MOBILE devices and applications, such as virtual reality
software [1], are changing how people engage with

technology, enabling decentralized, efficient, and reliable
P2P interactions, and opening doors for innovation and
entrepreneurship. The significant increase in delay-sensitive
or budget-sensitive tasks due to the expanding use of mobile
devices and various built-in applications has prompted the
adoption of Mobile Edge Computing (MEC) in numerous
areas [2]. A stable MEC system contains information on all
network servers, such as task processing and information
transmission capabilities, authentication information, etc.
This enables the central server to create secure and effective
task-offloading policies [3]. However, in the initial stage of
the MEC system, this information is unknown, making it
crucial to develop an efficient task allocation policy in such
a scenario.

Security issues arise from the centralized structure
of MEC. In many existing MEC networks, centralized
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task-offloading centers handle service requests and task-
offloading policies. A significant risk is the random selection
of an edge server for task-offloading without proper authen-
tication and security certification, leading to severe conse-
quences if the server is hacked or compromised. Moreover,
some bad actors exploit the system by providing misleading
task processing results that are difficult to track.

Efficiency issues, at the same time, stem from the lack of
critical information about connected servers, such as edge
servers’ task processing capacity and channel conditions.
Without these key parameters [4, 5], task-offloading poli-
cies struggle to accurately assign tasks to suitable servers,
potentially leading to delay-sensitive tasks being allocated
to servers with limited capacity.

Cryptographic techniques provide effective solutions for
addressing security issues. While these techniques enhance
privacy protection in a centralized framework, the encryp-
tion and decryption processes involve significant informa-
tion transmission, consuming plenty of communication re-
sources. Therefore, a decentralized communication frame-
work, like integrating a committee mechanism through a
consortium blockchain, is better suited to address this is-
sue. Blockchain-enabled MEC networks make responsibility
tracing feasible, acting as a strong deterrent against ma-
licious attackers [6, 7]. Through a voting mechanism, the
offloading policies implemented by the smart contract in
the system are reliable, guaranteeing transparency in task
execution throughout the network [8–11].

The Multi-armed Bandits (MAB) framework is an effec-
tive approach to efficiency issues [12]. It is a type of rein-
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forcement learning algorithm that involves balancing ex-
ploration and exploitation in a sequential decision-making
process to identify the most optimal options (a.k.a. arms,
actions, or servers).

However, three new challenges have emerged when
implementing these solutions. The first challenge arises in
the context of MEC, where online/offline servers introduce
changes to the action space within the MAB framework [13–
15]. Traditional MAB algorithms do not account for these
variations [16]. Factors such as low battery levels or the
movement of mobile devices in and out of service range
can lead to fluctuations in the number of servers. In such
scenarios, a more adaptable algorithm capable of adjusting
to real-time changes may be necessary. The second chal-
lenge occurs when dealing with a large volume of comput-
ing tasks, where traditional MAB algorithms sequentially
offload tasks. These algorithms adjust task-offloading poli-
cies only after receiving feedback from the previous action,
resulting in considerable time consumption. For instance,
in the Upper Confidence Bound (UCB) algorithm [17–19],
formulating the next task-offloading policy before obtaining
feedback from the previous one may lead to the repetition
of the same choice, which is highly undesirable. The third
challenge arises when addressing diverse sensitive tasks.
Existing bandit-based works primarily concentrate on opti-
mizing a single target, such as delay or budget.

Motivations. To address the above security issues and
three new challenges from efficiency issues, we first develop
a consortium blockchain-enabled Committee Voting-based
task-offloading Model (CVTOM) to devise task-offloading
policies while preventing malicious servers jointly. Differ-
ent voting principles mechanism is first designed, helping
committee members to vote for a task-offloading policy
according to the status of its resources which could reflect
the resource situation of the system, and tasks can be as-
signed accordingly. Secondly, we propose an MAB-related
Thompson Sampling-based Adaptive Preference Optimiza-
tion (TSAPO) algorithm to guide computing tasks offload-
ing. Different from other MAB-based algorithms, dynamic
server space is first considered, helping a committee
member to win the vote which recreates the scenario of
a blockchain node online/offline realistically. Finally, we
conduct simulation experiments to demonstrate the func-
tionality of the CVTOM system. The superior performance
of the TSAPO algorithm is validated through theoretical
analysis and practical experiments. The contributions of this
paper are summarized as follows:

• We build a CVTOM MEC system, integrating a
consortium blockchain-based committee mechanism
and a voting consensus approach that can mitigate
the central server’s risks of paralysis or malicious in-
tent. When confronted with different task-offloading
policies, a voting process is utilized to select the
policy with the expected optimal performance. We
are the first to set different voting principles for
committee members based on their resource strengths
and weaknesses, considering both delay and budget
simultaneously.

• We proposed the TSAPO algorithm for the CVTOM
system to optimize task-offloading policies, consid-

ering dynamic server space over traditional MAB-
based algorithms. Its advantages include 1) Time
and budget savings, aiding the master edge server
in achieving consensus via parallel task allocation
voting; 2) Rapid identification of the top-performing
edge server. Leveraging the Thompson Sampling
algorithm, it dynamically adjusts task allocation poli-
cies per round based on feedback; 3) Minimization of
resource wastage during exploration by applying up-
per confidence bound principles to filter out servers
with notably poor performance.

• A highly informative proof process is given. We
conduct theoretical analysis to show that the pro-
posed TSAPO has strict upper bounds on regret,
with linear growth over time. Its upper bound is√
λT (M +N) log (λT ) where T is the number of

system running rounds, M + N is the maximum
number of the connected servers, λT is the number
of tasks collected in CVTOM system. We perform
simulation experiments to demonstrate the applica-
bility and superiority of TSAPO compared to tradi-
tional bandit algorithms in terms of optimal server-
choosing rate, total delay, total budget cost, and task-
dropping rate.

The paper is structured as follows: Section 2 recaps
existing research in related fields. Section 2.3 introduces
a comprehensive CVTOM model for MEC and outlines
optimization challenges. In Section 4, the TSAPO algorithm
is introduced with a detailed mathematical analysis of its
regret convergence. Section 5 evaluates the performance of
TSAPO through simulated experiments. Finally, Section 6
concludes by summarizing the key findings and contribu-
tions of the paper.

2 RELATED WORK

In this section, notable progress has been made in ad-
dressing both security and efficiency issues in MEC task-
offloading. For security, integrating blockchain into the MEC
system offers a robust solution. For efficiency, approaches
with and without critical network state information, such
as task parallelism offloading, optimizing multiple objec-
tives, and employing dynamic action spaces in MAB-based
models, have proven effective during task offloading stages.
Details on each approach are summarized in Table 1.

2.1 Addressing MEC Task-offloading Security Issues
For security issues, some previous studies have demonstrated
strong performance in defending against and detecting ma-
licious task-offloading servers in MEC.

Dong et al. [27] introduce a Fusion algorithm to detect
servers using low-quality models or deviating from pro-
tocols by comparing public sample results. Ghodsi et al.
[28] propose the SafetyNets to verify cloud server inference
performance, while Zhao et al. [29] present Veri-machine-
learning for fair payments in machine learning services. All
rely on a trustworthy center, which can be compromised in
certain scenarios.

Blockchain-enabled networks could offer a reliable com-
munication environment, with smart contracts facilitating
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TABLE 1
Summary of the Existing Works

Architectural Attributes
Existing Works

Our Work
[7, 8, 20, 21] [22, 23] [24, 25] [13–15, 20, 21] [21, 26]

Blockchain-enabled MEC System ✓ ✓ ✓
Task Parallelism Offloading ✓ ✓ ✓

Multiple Optimization Objectives ✓ ✓ ✓

Dynamic Action Space ✓ ✓

interactions among IoT devices [7, 8, 20]. Xu et al. [20]
propose BeCome for blockchain-enabled MEC system which
is a computation offloading method for edge computing,
addressing resource imbalance and security vulnerabilities
while optimizing resource allocation through genetic algo-
rithms and decision-making policies. Following his work,
Guo et al. [7] propose a blockchain-enabled Vehicloak sys-
tem that successfully verifies transactions without reveal-
ing location data in a vehicle scenario. And Nguyen et
al. [8] using block mining through a Proof-of-Reputation
consensus mechanism to propose a similar method that
considers more network aspects when optimizing system
utility via distributed deep reinforcement learning, game-
theoretic approaches and voting mechanism.

2.2 Addressing MEC Task-offloading Efficiency Issues
with Critical Network Information
For efficiency issues, an efficient task-offloading policy is
crucial for optimizing network resource utilization and en-
hancing service quality [30]. Task parallelism offloading and
multiple optimization objectives are among the most widely
considered methods.

Several studies focus on minimizing delay, energy, or
others in distributed learning networks [4, 21, 24–26]. Wang
et al. [4] enhances the robustness of task-offloading algo-
rithms in systems considering server mobility and remain-
ing battery power. Li et al. [21] investigates how to jointly
optimize sensor node deployment, edge node deployment,
data routing, and data offloading to minimize the number
of deployed sensor nodes, the number of deployed edge
nodes, and event reporting delay and maximize network
lifetime. Zhu et al. [26] optimize edge computing service
provider profits and energy in a blockchain-enabled MEC
system.

Task parallelism offloading is also a useful way to in-
crease the efficiency of the network. Shi et al. [22] pro-
pose a deep reinforcement learning vehicle-to-vehicle task-
offloading algorithm to offload part of a task to a neighbor
edge server, allowing them to process tasks parallelly in a
VEC scenario. In Guo et al. [23] work, different collabora-
tive mining networks could jointly interact with network
resource demanders where task processing efficiency and
mining network profits are increased.

Combining both multiple optimized targets and task
parallelism offloading is also a well-researched plant. He et
al. [24] consider minimizing performance and operational
expenditures while maintaining system performance at a
predetermined level by parallelism offloading tasks. Li et al.
[25] propose HASP which enhances multi-NN performance

through task parallelism offloading and multiple optimized
targets by isolating resources and fine-tuning allocation.

However, as the system scale grows, it becomes chal-
lenging to obtain or predict system information, particu-
larly channel conditions [31]. Addressing task-offloading in
a system with unpredictable key factors or lacking prior
knowledge is a significant challenge.

2.3 Addressing MEC Task-offloading Efficiency Issues
without Critical Network Information
MAB framework [32] offers a promising approach to meet
such requirements. Ye et al. [33] have introduced a decen-
tralized task-offloading algorithm that operates within an
epoch-based framework to optimize participants’ rewards
concerning system delay. These fundamental principles are
also applied in vehicular edge computing networks [34]
and fog networks [35]. This policy facilitates the offloading
of user tasks to different servers in an online learning
environment.

In some scenarios, like systems with battery-enabled
edge servers or mobile servers, the connected edge server
set is dynamic Therefore, dynamic action spaces for the
task-offloading algorithm makers are also essential [13–
15, 20, 21].

Gao et al. [13] propose the eAUCB algorithm to handle
the situation that some arms may be unavailable in some
rounds and the arms will bid inconsistently in different
rounds. Hong et al. [14] propose off-policy learning to of-
fload tasks with logged bandit feedback to the connected
servers. Zhu et al. [15] analyze algorithms that address the
contextual bandits problem, demonstrating strong empir-
ical performance when the number of possible actions is
small. However, providing guarantees for decision-making
in large, continuous action spaces remains challenging,
highlighting a significant gap between theory and practice.
Despite the shortcomings of their work, it still inspires us to
design task-offloading algorithms.

3 SYSTEM MODEL

In this section, we introduce CVTOM within a blockchain
environment with dynamically varying task-sensitive con-
ditions in MEC. The model will be discussed in the subse-
quent sequence: (1) System Components; (2) System Opera-
tion Process; (3) Model Details; (4) Problem Formulation.

3.1 System Components
The following are explanations about the main components,
actions, and essential definitions in the CVTOM which
definitions are shown in Table 2.
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discrepancy in Eq. (7) which is different from the detailed definition in
Section 3.3.2.

Mobile Devices (Users). They are portable devices such
as laptops, smartphones, etc. Software applications, like
VR games, on mobile devices often produce time-sensitive
computing tasks while in use. Occasionally, these tasks may
be managed by the devices, but for the purposes of this
paper, we are excluding this possibility. We assume that
the devices discussed here lack the capability to promptly
handle the tasks they create. Therefore, all tasks will be
offloaded to edge servers for processing.

Tasks & Requests. Mobile devices initially create service
requests and then transmit tasks to the designated edge
server based on the task-offloading policy. The request size
is minimum and insignificant. The quantity of tasks received
in each round follows a Poisson distribution.

Edge Servers. In our system, the edge servers S are
categorized into two types: stable servers and temporary
servers. Stable servers, represented by base stations (Fig. 1),
are equipped with powerful computers. These base stations
handle task transportation and communication for task-

offloading policies, while the powerful computers process
delay-sensitive tasks. Stable servers remain online continu-
ously.

Temporary servers are either migration devices or small
servers powered by a battery, capable of temporarily pro-
cessing certain tasks. These temporary servers may be of-
fline temporarily or permanently. To simplify, we refer to the
first M servers in S as stable servers Ssta and the remaining
servers as temporary servers Stem, with the server set S
defined as S = Ssta ∪ Stem.

Rounds. Consider this system as progressing through
a round horizon T . A single round t signifies the smallest
cycle in the system. Within a round, service requests are first
collected, followed by the implementation of task allocation
policies, and finally, tasks are executed while evaluating
policy performance.

TODMC. The system operates on a blockchain network
with edge servers as blockchain nodes. Node behaviors, in-
cluding task processing details, are stored on the blockchain
to ensure the credibility of the system. Within our system,
certain nodes possess robust task processing capabilities and
rapid information exchange speeds (capable of swift consen-
sus). These nodes, known as powerful nodes, can be either
stable servers or temporary servers with high processing
power and close proximity to other nodes. Task-offloading
algorithms in the form of smart contracts are deployed on
these powerful nodes. Grouped together, some powerful
nodes form a unique task-offloading Decision Making Com-
mittee (TODMC), which is responsible for devising task-
offloading policies and voting for an accounting node.

Policy. A policy π is defined as a set of (“Task”, “Target
server”) pairs that are round-dependent.

Voting Function. The functions u(π) are created to eval-
uate the effectiveness of a policy by assessing its perfor-
mance. Voting functions are configured as convex combi-
nations of delay and cost, consistently differing from other
members in the TODMC.

Preference: It determines the voting function for
each TODMC member, denoted as a tuple of argu-
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ments. Preferences may include time-saving, cost-saving,
energy-saving, etc.

3.2 System Operation Process

To ensure that the servers are trustworthy, we establish
CVTOM within an MEC system. The details will be ex-
plained in the following three parts: 1) CVTOM advantages
over traditional blockchain-enabled MEC; 2) Initial steps of
CVTOM; 3) Operation process of CVTOM.

CVTOM distinguishes itself from other systems by as-
suming that the computing tasks it generates may have dual
sensitivity, incorporating both delay and cost sensitivity. It’s
noteworthy that the weighting of the voting function for de-
lay versus budget can vary among individuals, a significant
departure from prior research [22]. These intricate details
will be extensively modeled in the forthcoming subsection.

In a distributed communication MEC scenario, depicted
in Fig. 1, the initial steps of our system are as follows:

1) Select a committee of nodes with exceptional task
processing capabilities. Members are chosen based
on their exceptional past performance or mutual
recommendations among nodes, with the assump-
tion that all committee members were predeter-
mined from the start.

2) Apply task-offloading algorithms on smart con-
tracts and create voting functions for committee
members according to their specific preferences,
such as energy efficiency or time optimization.

Then, the operation process for a single round of CV-
TOM is as follows:

1) Edge servers collect computing requests roundly.
2) For each committee node, based on the algorithm

in the smart contract (which is unique for each
individual), proposes its own task-offloading policy
and broadcasts it.

3) Receive policies from other members, predict their
outcomes, and vote for the best-performing policy
based on their own voting function. Detailed in
Fig. 2, the winner is the third committee member.

4) The node with the highest number of votes be-
comes the bookkeeping node and applies its task-
offloading policy.

5) As Fig. 2 shown, record the policy performance
result to the blockchain including the task, result,
and payments of each user.

6) Output the task results to users.
7) Checking server connection status by the TSAPO.

3.3 Model Details

Model details are divided into two parts: the establishment
process, which includes the voting functions model, and
the operation process, which includes the task processing
model, voting model, and benefit model.

3.3.1 Task Processing Model
For simplicity, we define the first M servers in S as stable
servers. The remaining servers are temporarily connected

with a maximum of N servers which the server set S is rep-
resented as S = {k1, . . . , km, . . . , kM , kM+1, . . . , kM+N}.
Obviously, a total of M + N servers can be concurrently
connected during the specified time horizon.

The number of tasks in each round follows a Poisson
distribution: P (X = k) = λk

k! exp {−λ}. Therefore, the num-
ber of tasks generated in the t-th round is denoted as
λt. In the t-th round, the i-th task is denoted as ωi,t =(
ωF
i,t, ω

B
i,t, πt,km

(i) , ωP,1
i,t , ωP,2

i,t

)
, i ∈ {λt} where one of ωP,1

i,t

or ωP,2
i,t is 0.

The task processing model illustrates transferring tasks
from mobile devices to edge servers. We model this process
as consuming time and fund costs.

(1) Delay for a single task. A TODMC collects all tasks,
and the target server πt,km

(i) for ωi,t is determined by the
algorithm, where πt,km

(i) ∈ [S]. The total delay for ωi,t is
denoted by D (ωi,t):

D (ωi,t) = Dup (ωi,t) +Dexe (ωi,t) +Ddown (ωi,t) , (1)

where Dup (ωi,t) denotes the task upload delay, Dexe (ωi,t)
denotes the task execution delay, and Ddown (ωi,t) denotes
the result download delay:

Dup (ωi,t) =
ωF
i,t

rπt,km (i)
,Ddown (ωi,t) =

ωB
i,t

rπt,km (i)
,

Dexe (ωi,t) =
ωF
i,t

vπt,km (i)
= ωF

i,t ·
β

fπt,km (i)
,

(2)

And following the Shannon formula, we have

rπt,km (i) = Wπt,km (i) log2

(
1 +

pπt,km (i)hπt,km (i)

N

)
, (3)

where rπt,km (i) denotes the transmission rate between
TODMC and the πt,km

(i)-th server; Wπt,km (i) is the channel
bandwidth to the πt,km

(i)-th server, which is fixed but
unknown; pπt,km (i) indicates the power consumption level
for uploading tasks to the πt,km

(i)-th server; hπt,km (i) sig-
nifies the channel gain between TODMC and the πt,km

(i)-
th server; N is random white sub-gaussian noise power;
vπt,km (i) is the CPU capability of the πt,km

(i)-th server;
β is the average CPU cycles needed to execute one bit of
information; and fπt,km (i) is the CPU clock frequency of the
πt,km

(i)-th server.
(2) Fund cost for a single task [36]. A fixed fee for a

single task is not suitable for edge servers with different
computing capacities. Therefore, a dynamic fund cost for a
single task includes computing resource consumption and
energy consumption. For ωi,t, its fund cost is denoted as
C (ωi,t):

C (ωi,t) = Cres (ωi,t) + Ceng (ωi,t) , (4)

where Cres (ωi,t) is the computing resources consumption
and Ceng (ωi,t) is the energy consumption, which is obtained
as follows:

Cres (ωi,t) = a · ωF
i,t,

Ceng (ωi,t) = e1 · Dexe (ωi,t) + e2 · Ddown (ωi,t) ,
(5)

where a is the fee-charging rate for processing one-bit infor-
mation, e1 is the CPU energy charging standard per second,
and e2 is the signal transmitter energy charging standard
per second.
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TABLE 2
Definition of Parameters

Notation Definition

S; Ssta; Stem
Server set contains M + N edge server; Stable server set contains M servers Ssta =
{k1, . . . , km, . . . , kM}; Temporary server set contains N servers Stem = {kM+1, . . . , kM+N}.

T ; t Round horizon. Denoted as T = {1, 2, . . . , t, . . . , T} where t ∈ T .
π; πt,km (i) Task-offloading policy; Target server for task execution.

ω; ωi,t; ωF
i,t; ωB

i,t; ωP,1
i,t ; ωP,2

i,t
A task; Task in t-th round generated by the i-th user; The size of the task; The size of the result; The
limited delay of the task; The limited delay of the budget.

D (·); Dup (·); Ddown (·);
Dexe (·) Task delay; Task upload delay; Task download delay; Task execution delay.

v; f ; β; r; W ; h; N CPU capacity; Average CPU cycles needed to executed one bit of task; CPU clock frequency; Transmis-
sion rate; Channel bandwidth; Channel gain; Random white sub-gaussian noise power.

C (·); Cres (·); Ceng (·); Dexe (·) Fund cost; Computing resource consumption; Energy consumption.

a; e1; e2
fee-charging rate for processing one-bit information; CPU energy charging standard per second; Signal
transmitter energy charging standard per second.

ukm (cdot); α1; α2; D̂; Ĉ; P1
Voting function; Preference parameters; Delay performance of the policy; Fund cost of the policy; Policy
set of one’s own.

R (·); {·}∗; λ Regret performance; God policy; Parameter of the Poisson distribution.

Φt; ϕi,t; ϕid
i,t; ϕc

i,t; ϕd
i,t

Recording matrix; Piece of server information; Connected server ID; Budget cost performance tuple;
Delay performance tuple.

Lt; Lt,c; Lt,d Idle server set; Idle budget preference server set; Idle delay preference server set.

3.3.2 Voting Function and Voting Model

(1) Voting Function. The purpose of the voting function is to
assess the effectiveness of a task-offloading policy. Different
committee members have varying voting functions, with
each function being inherently self-serving, indicating that
the performance of their task-offloading policy is supe-
rior under their own voting function. A server with high
task processing speed is inclined to undertake more tasks,
leading to greater rewards over a stable period. However,
this greedy bias is constrained, suggesting that if a par-
ticular policy proves to be sufficiently effective, committee
members will still vote for it. Let πt,km

represent the task-
offloading policy formulated by the k-th committee member
in the t-th round where:

πt,km =
⋃

i∈{λ}

πt,km
(i), (6)

The voting function is:

ukm
(πt,km

) =α1 ·
(∑

i∈{λt} D (ωi,t)− D̂
D̂

)

+α2 ·
(∑

i∈{λt} C (ωi,t)− Ĉ
Ĉ

)
,

(7)

where D̂ denotes the delay performance of its policy (with
id km), Ĉ is the fund cost of its policy, and α1, α2 signify
the preference parameters of the km-th committee member.
The principle behind Eq.(7) is to assess the time and fund
costs of other committee members’ policies relative to one’s
own policy, thereby determining their comparative advan-
tages. The ratio of advantages and disadvantages is calcu-
lated, with the influence of these factors controlled by the
preference parameters α1 and α2. The computing resource
consumption significantly outweighs energy consumption
in the MEC scenario. Hence, we can conveniently ignore

the impact of energy consumption disparity and adjust the
voting function to the following form:

ukm (πt,km) =α1 ·
(∑

i∈{λ} D (ωi,t)− D̂
D̂

)

+α2 ·
(∑

i∈{λ} Cres (ωi,t)− Ĉres

Ĉres

)
.

(8)

(2) Voting Model. Denote the committee member set as X .
Each member establishes its voting function and a policy
performance ranking list, denoted as Vkm , km ∈ S . After
one’s policy is made, it broadcasts its policy and receives
the others’ policies grouping as the policy set P1:

P1 =
⋃

km∈X\{1}

πt,km
, (9)

where {1} is one’s own policy.
Calculate the votes by evaluating all policies, rank them,

and select the top one to be broadcast. The policy with
the highest votes will be chosen as the next task-offloading
policy, and its proponent will become the bookkeeper.

3.4 Problem Formulation

The primary objective of P1 is to reduce the delay and bud-
get cost of the entire network. Solving P1 could minimize
delays in task processing, enhance the user experience, and
increase server profits.

To minimize the sum of both the average delay con-
sumption and the budget cost consumption during the
whole time horizon after normalization 1, the optimization
problem could be formulated as follows:

1. The D (·) and C (·) in P1 indicate the value after normalization.
The normalization method used here is the Min-Max normalization,
where the minimum and maximum performance of the system can be
borrowed from historical data of other similar networks.
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P1:min

∑T
t=1

∑λt

i=1 D (ωi,t)∑
t∈T ,i∈{λt}

ωF
i,t

+

∑T
t=1

∑λt

i=1 C (ωi,t)∑
t∈T ,i∈{λt}

(
ωF
i,t + ωB

i,t

) ,
(10)

s.t. πt,km
(i) ∈ S (server constraints) (10a)

t ∈ T , i ∈ {λt} (round horizon constraints) (10b)

The server constraints (i.e., 10a) indicate that the task-
processing server must be selected from S , while the round
horizon constraints (i.e., 10b) specify that the network
should operate within the defined rounds.

Theorem 1. P1 is a non-convex problem.

Proof. According to the server constraints, the πt,km (i) ∈ S
where S is a dynamic set where temporary servers are not
settled. The range of values of the independent variable is a
non-convex set, so the P1 is a non-convex problem.

Firstly, P1 is a non-convex problem. Moreover, solving
P1 requires detailed knowledge of various critical network
state information. As a result, P1 is challenging to solve.
Therefore, we aim to reformulate the problem within the
regret framework and bound its regret to find a sub-optimal
solution, which is a common approach for addressing simi-
lar cold-start optimization problems [32, 37].

The regret framework has three main components: the
god policy, the applied algorithm, and the regret. The god
policy is an ideal algorithm that minimizes delays and costs,
but it’s unrealistic due to unpredictable conditions. The
applied algorithm is a practical choice based on expertise
and considerations. Regret measures the performance gap
between the applied algorithm and the god policy, high-
lighting areas for improvement. By using this framework,
we could translate P1 to P2. The following are the regret of
delay R(D) and budget R(C) of the network:

R(D) =
T∑

t=1

λt∑
i=1

(D (ωi,t : {πt,km
(i)}∗)−D (ωi,t)) ,

R(C) =
T∑

t=1

λt∑
i=1

(C (ωi,t : {πt,km (i)}∗)− C (ωi,t)) ,

(11)

where {πt,km
(i)}∗ is the god policy with the least delay

and budget cost. The P2 tries to minimize the regret of both
delay and budget cost.

P2:min

 R(D)∑
t∈T ,i∈{λt}

ωF
i,t

+
R(C)∑

t∈T ,i∈{λt}

(
ωF
i,t + ωB

i,t

)
 , (12)

s.t. πt,km
(i) ∈ S (server constraints) (12a)

t ∈ T , i ∈ {λt} (round horizon constraints) (12b)

D(ωi,t) ≤ ωP,1
i,t (delay constraints) (12c)

C(ωi,t) ≤ ωP,2
i,t (budget cost constraints) (12d)

The delay constraints (i.e., 12c) and budget cost constraints
(i.e., 12d) are the maximum time overhead and budget
overhead acceptable for the task.

P2 is an NP-Hard problem. We prove the NP-hardness
of P2 by reducing P2 to the Set Cover Problem (SCP) which
is a well-known NP-hard problem [38]. The following is the
reduction process.

• Description of P2. In the regret framework, task-
offloading policies πt,km

(e.g., subsets in SCP) are
selected over rounds t, aiming to minimize regret
where the regret is the difference between the chosen
policies and the optimal solution.

• Reduction. Map SCP to the P2. (1) Map each sub-
set as a task-offloading policy πt,km

. (2) Map the
feedback (i.e., delay performance D (ωi,t) and cost
performance C (ωi,t)) of each policy as the number
of elements covered. (3) Map the “server constraints”
as constraints in SCP that when selecting subsets,
each subset must include certain specific elements.
(4) Map the “round horizon constraints” as the
maximum number of selected subsets. (5) Map the
“delay constraints” and “budget cost constraints” as
penalties when subsets include specific groups of
elements. (6) Map the minimization of regret in P2
to covering all elements with the fewest subsets.

In addition, two examples are provided to illustrate
that a task-offloading policy (made by applying the UCB1
algorithm) cannot be verified as optimal within polynomial
time, confirming that P2 is indeed an NP-hard problem.

• Case 1: Stable Server Space. Consider a system
that contains two policies whose performance is
in [x1 − τ, x1 + τ ],

[
x2 − τ

′
, x2 + τ

′
]
, where x1 =

x2 are the performance empirical mean and τ =√
t/A1, τ

′
=
√
t/A2 are the confidence radius with

policy selected times A1, A2. To find the best policy,
we should prove that τ > τ

′
or τ < τ

′
. However, if

t < ∞, we only have |τ − τ
′ | > 0.

• Case 2: Dynamic Server Space. It is not feasible to
verify whether the currently connected server will
outperform all future edge servers. This limitation
makes the optimal policy for P2 inaccessible, thereby
confirming that P2 is an NP-hard problem.

Consequently, based on the definition of an NP-hard
problem, we conclude that P2 is indeed NP-hard. A more
effective approach, therefore, is to propose an online explo-
ration algorithm that demonstrates linear regret growth, as
illustrated below:

lim
t→∞

 R(D)∑
t∈T ,i∈{λt}

ωF
i,t

+
R(C)∑

t∈T ,i∈{λt}

(
ωF
i,t + ωB

i,t

)
→ 0.

(13)

4 DESIGN DETAILS OF TSAPO
In this section, we present a Thompson Sampling-based
Adaptive Preference Optimization algorithm (TSAPO) to
address the problem P2. The TSAPO algorithm is designed
for an individual CVTOM committee member, ensuring that
the decisions align with the member’s expertise.
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4.1 Reflecting the MAB Framework into CVTOM

The MAB framework consists of decision-making problems
where an agent follows a round policy, trying different
actions (or arms), and receiving rewards or penalties. The
challenge lies in balancing exploration of new actions for
potential rewards with exploitation of known high-reward
actions, aiming to make optimal decisions in uncertain
environments to maximize cumulative rewards. The round
policy typically follows an algorithm, with Thompson Sam-
pling being one of them. In the CVTOM, the agent is
replaced by TODMC, a decentralized and transparent en-
tity, enhancing overall system stability and Security. Each
“action” of the bandit is an option edge server in S that can
process computing tasks. The goal shifts from maximizing
the cumulative action reward to minimizing cumulative
regret as denoted in P2.

The MAB framework involves decision-making prob-
lems where an agent follows a round-based policy, test-
ing different actions (or arms) and receiving rewards or
penalties. The main challenge is balancing the exploration
of new actions for potential rewards with the exploitation
of known high-reward actions to make optimal decisions in
uncertain environments and maximize cumulative rewards.
This policy typically uses algorithms such as Thompson
Sampling. In most existing MEC scenarios, the agent is
a centralized base station that independently makes task-
offloading decisions for free communication. However, in
the proposed CVTOM, the agent is replaced by TODMC, a
decentralized and transparent entity that improves system
stability and security. Each “action” in the bandit framework
is an edge server in S capable of processing computing
tasks. The goal shifts from maximizing cumulative rewards
to minimizing cumulative regret, as defined in P2

Before introducing the TSAPO algorithm, some useful
notations were made. Denote g as the prior distribution for
setting up Thompson sampling (generally set as Gaussian or
sub-gaussian distribution). Denote Φt as the recording ma-
trix at the t-th round, Φt = {ϕ1,t, ϕ2,t, . . . , ϕi,t, . . . }T where
{·}T is the matrix transpose. The recording matrices record
all the essential information of edge servers in {S} stored at
each TODMC member. For each piece of server information
ϕi,t =

(
ϕid
i,t, ϕ

c
i,t, ϕ

d
i,t

)
where ϕid

i,t is the connected server
ID number which satisfy ϕid

i,t ≤ M + N ; ϕc
i,t is the budget

cost performance tuple; and ϕd
i,t is the delay performance

tuple. ϕc
i,t =

(
ϕc,1
i,t , ϕ

c,2
i,t , ϕ

c,3
i,t , ϕ

c,4
i,t , ϕ

c,5
i,t , ϕ

c,6
i,t

)
where ϕc,1

i,t is
the maximum observation of task execution cost during
the first t round, ϕc,2

i,t is the minimum observation of task
execution cost during the first t round, ϕc,3

i,t is the average
task execution cost, ϕc,4

i,t is the selected times during the first
t round, ϕc,5

i,t is the mean value of the gaussian conjugate
parameter, and ϕc,6

i,t is the variance of the gaussian conjugate
parameter. ϕd

i,t follows the same structure as ϕc
i,t.

Denote a sub-optimal server as an action that still exists
in the recording matrix. To be classified as sub-optimal, there
are two ways: the performance gap between sub-optimal
servers and the observed optimal server is tolerable, or the
server is just connected to the CVTOM system.

Algorithm 1 TSAPO Algorithm
Input:

The set of Stable Server and connected Tempo-
rary Server; The recording matrix Φt; Initialize prior
distribution as Gaussian-Gaussian conjugate Priors
N (ϕc,5

i,t , ϕ
c,6
i,t ),N (ϕd,5

i,t , ϕ
d,6
i,t ), t ∈ [T ] , i ∈ {λt};

Output:
A series of task-offloading policy;

1: for the first batch do
2: Try each server in Φt and update the corresponding

arguments in recording matrix;
3: end for
4: for t = 1 : T do
5: TODMC collects λt task requests;
6: Run Server Modification algorithm (Algorithm 2);
7: Get idle server set Lt = Lt,c ∪ Lt,d;
8: while True do
9: if ωP,1

i,t ̸= 0 and ∥Lt,c∥ ≥ 2 then
10: Let πt,km

(i) = argϕid
i,t∈Lt,c

minN (ϕc,5
i,t , ϕ

c,6
i,t );

11: else if ωP,2
i,t ̸= 0 and ∥Lt,d∥ ≥ 2 then

12: Let πt,km(i) = argϕid
i,t∈Lt,d

minN (ϕd,5
i,t , ϕ

d,6
i,t );

13: end if
14: if πt,km(i) is not None then
15: Offload task to πt,km(i) and update Φt;
16: Collect πt,km(i) into task-offloading policy P1;
17: end if
18: if All tasks have been offloaded then
19: Break;
20: end if
21: end while
22: Broadcast P1 to the other TODMC numbers;
23: end for

4.2 Detailed Explanation of TSAPO and Its Advantages
The TSAPO algorithm explanation is divided into three
parts: an in-depth introduction of TSAPO, a detailed
overview of the Server Modification, and a comparison of
its benefits with leading MAB-based algorithms.

Introduction to TSAPO. As shown in Algorithm 1,
TSAPO helps a committee member develop task-offloading
policies over multiple rounds to win the vote. The input to
TSAPO includes key parameters, especially the Gaussian-
Gaussian conjugate distribution arguments for sampling
server capacity. The output is a sequence of task-offloading
policies. In lines 1–3, the algorithm gathers available servers
and records their performance metrics, including delay and
budget cost. When receiving λt task requests in the t-th
round, the algorithm identifies the available servers using
the Server Modification algorithm (Algorithm 2). In lines
9–13, after classifying the tasks, the Thompson Sampling
algorithm is used to sample and choose either the mini-
mum budget cost or delay to process the current task. This
iterative process continues until all tasks are assigned to
their respective edge servers, forming the final policy for
the round. Finally, this policy is broadcast to other TODMC
members for voting. The TSAPO algorithm is compared
with traditional MAB-based algorithms within the TODMC
framework, and the resulting policies are evaluated.

Introduction to the Server Modification Algorithm.
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Algorithm 2 Server Modification Algorithm
Input:

The recording martix Φt;
Output:

Idle server set Lt = Lt,c ∪ Lt,d;
1: Set {Lt} = ∅;
2: Find the observed optimal server for saving budget

cost as
c : ϕid

i,t = argϕid
i,t

minϕc,3
i,t ;

3: Find the observed optimal server for saving delay as
d : ϕid

i,t = argϕid
i,t

minϕd,3
i,t ;

4: for ϕid
i,t ∈ Φt\{c : ϕid

i,t} with no budget cost None do

5: if ϕc,3
i,t ≥ ϕc,3

c:ϕid
i,t,t

+

√
ξc ln

∑t
j=1 λj

ϕc,4
i,t

then

6: Mark ϕid
i,t as budget cost None;

7: else
8: Add ϕid

i,t in {Lt,c};
9: end if

10: end for
11: for ϕid

i,t ∈ Φt\{d : ϕid
i,t} with no delay None do

12: if ϕd,3
i,t ≥ ϕd,3

d:ϕid
i,t,t

+

√
ξd ln

∑t
j=1 λj

ϕd,4
i,t

then

13: Mark ϕid
d,t as delay None;

14: else
15: Add ϕid

i,t in Lt,d;
16: end if
17: end for
18: if New servers appears then
19: Add it into Φt, Lt,c and Lt,d;
20: end if
21: if Servers offline then
22: Mark ϕid

i,t as both budget cost None and delay None;
23: end if

The Server Modification Algorithm, outlined in Algorithm
2, has two main objectives. First, it detects and filters out
underperforming servers to prevent them from processing
certain tasks. Second, it integrates new servers into the
network or removes servers that have lost connectivity. The
algorithm takes the t-th round recording matrix, Φt, as input
and outputs two sets of servers: one for powerful servers
and another for idle servers.

In line 1, the algorithm initializes the set of idle servers
as empty. Lines 2–17 focus on detecting underperform-
ing servers, while lines 18–23 handle the integration and
removal of servers. Sub-optimal servers are identified by
excluding those marked as ”budget cost None” or ”delay
None”. The algorithm then compares these servers with the
observed optimal server and filters out the underperforming
ones. This is done through the if statements in lines 5 and
12, which follow a policy similar to the UCB algorithm.
The UCB approach compares the lower confidence bound
of sub-optimal servers with the upper confidence bound
of the optimal server. If the upper bound of the optimal
server is lower, it means that server’s task processing cost
or delay is too high and is no longer worth considering. On
the other hand, if the upper bound of the optimal server is
higher, further exploration is needed. Lines 18 and 21 use if
statements to manage servers that are either online or offline

Algorithmic Complexity Analysis. From the pseudo-
code of the algorithm, it can be seen that the complexity of
the sampling operation for all connectable servers in a round
is O (M +N) and the complexity of the Server Modification
Algorithm is O (M +N). Therefore, the time complexity of
the TSAPO is O (T (M +N))

Advantages of the TSAPO. Several algorithms, such
as the UCB-based algorithm [19], have been designed to
solve MAB problems. In addition, there are classic algo-
rithms such as Epsilon-Greedy, Exploit-then-Commit (ETC),
etc. However, these algorithms are not suitable for solving
exploration and exploitation (EE) dilemmas in CVTOM en-
vironments. The main differences in the environments and
the advantages are summarized as follows:

1) The agent (TODMC) could pull multiple arms
(servers) in a single round.

2) Due to the existence of migration servers, the ex-
act number of arms remains unconfirmed, causing
changes in the recording matrix.

3) The task preferences are different and the optimiza-
tion variables are not single.

The regret upper bound of the TSAPO according to
Eq. ((12)) is as follows.

Theorem 2. According to P2, if all tasks collected are delay-
sensitive or budget-sensitive, the regret of the MEC system by
using TSAPO is finally bounded by the following, which is sub-
linear:

lim
T→∞

(
R∑

t∈T,i∈λt
ωF
i,t (ωi,t)

)
∝
√
λT (M +N) log (λT )

T
,

(14)
where T is the amount of the looping times; λT is the number
of tasks collected in CVTOM; M is the number of stable servers;
and N is the amount of connected temporary servers throughout
the entire round horizon.

Lipschitz Analysis. Let a random T real function G : R →
R. If Eq. (14) is proven, it means that the growth rate of regret is
sub-linear with time. According to the setting of Fig. 7, by setting
M +N = 20 and T > 40 would satisfy the Lipschitz condition.

Proof. The proof sketch. (1) Initially, preliminary work is con-
ducted, comprising modeling CVTOM as a Bayesian bandit
environment, the normalization of regret, the definition of
the two opposing events H and H′

, and the definition of
a useful function Kt (i). (2) Subsequently, by using Kt (i),
H and H′

, Lemma 4.1 is proven. According to Lemma 4.1,
the processing servers have an acceptable capacity under
the TSAPO algorithm. (3) Finally, under the task number
assumption and Lemma 4.1, we can prove that Eq. (23) holds
(i.e., Theorem 2 holds), which is the total regret of the system
by applying TSAPO is sublinear. The important conclusions
are listed as follows and the lengthy mathematical proof is
left in Appendix-A.

We prove Theorem 2 through the utilization of delay
regret. The CVTOM system operates within a Bayesian ban-
dit environment (E ,B (E) ,Q,P) by treating edge servers as
arms. Here, (E ,B (E)) denotes the measurable space; B (E)
signifies a Borel space within E ; Q reflects an arbitrary
prior conjugate distribution (specifically Gaussian-Gaussian
in this paper) defined on the aforementioned measurable
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space; and P is the corresponding kernel probability. Let
Ft = σ (A1, X1, . . . , At, Xt) be the σ-algebra generated by
the first t rounds of interactions. Set n = T as the time
horizon. To demonstrate the progress of the proof, we make
the following preparations and assumptions.
Preparations Normalize the regret into [0, 1]. Denote the
delay performance gap as:

∆d = max
i∈S,t∈T

ϕd,3
i,t − min

i∈S,t∈T
ϕd,3
i,t . (15)

Then the normalized delay bonus ri(t) in the t-th round
can be denoted as (abbreviated as ri):

ri (t) =
maxj∈S,t′∈T ϕd,3

j,t′
− ϕd,3

i,t

∆d
. (16)

And we assume the best server is:

A∗ = argmax
i∈S

ri(t). (17)

Define two events. Denote the correct estimation H,∀t ∈
n, i ∈ S and incorrect estimation H′

,∃t ∈ n, i ∈ S :

H =

|r̂i (t− 1)− ri| <
√√√√ 2 log (1/δ)

max
(
1, ϕd,4

i,t−1

)
 ,

H
′
=

|r̂i (t− 1)− ri| ⩾
√√√√ 2 log (1/δ)

max
(
1, ϕd,4

i,t−1

)
 ,

(18)

where r̂i (t− 1) is the delay bonus empirical mean of the
i-th server after t − 1 rounds of interaction with the envi-
ronment. Here, δ ∈ [0, 1], typically defined as 1/n2. It is
specified that if ϕd,4

i,t−1 = 0, then r̂i (t− 1) = 0.
Define clip function. Define the function Kt (i) as:

Kt (i) = clip[0,1]

r̂i (t− 1) +

√√√√ 2 log (1/δ)

max
(
1, ϕd,4

i,t−1

)
 , (19)

where clip[0,1] (x) = max (0,min (1, x)).
Task number assumption. For the first t rounds, we assume
that:

lim
t→∞

P{
t∑

j=1

λj = t · λ} → 1. (20)

Under such an assumption, we consider the number of
tasks collected to be fixed.

Lemma 4.1. The performance of servers in Lt is acceptable.

Proof. Using Hoeffding’s Inequality, after the t-th round,
the remaining servers are likely to be suboptimal, meaning
their performance is still good.

P{ϕd,3
i,t − ϕd,3

A∗,t ≤ ϵ} ≥ 1− 2 exp

− 2ϵ2t2∑
t

(
ϕd,1
i,t − ϕd,2

i,t

)2


≥ 1− 2 exp

{
−2ϵ2t2

t∆2
d

}
≥ 1− 2 exp

{
−2 ln {tλ}t2∆2

d

2t2∆2
d

}
≥ 1− 2 exp {− ln {tλ}} = 1− 2

t · λ
,

(21)

where ϵ = ∆d ·
√

ln {t·λ}
2t . Therefore, according to the

Eq. (21), we have:

lim
t→∞

P
{
ϕd,3
i,t − ϕd,3

A∗,t ≤ ϵ
}
→ 1, ϵ → 0, (22)

Therefore, we assume that the servers in Lt are acceptable.

According to Lemma 4.1, the servers selected at line 12 in Algorithm 1 after t rounds are acceptable. Let At be the server
selected by TSAPO and the total regret R can be formulated as (δ = 1

λ2T 2 ) and the main proof process is available in the
Appendix-A.

R = E

[
n∑

t=1

(rA∗ − E [Kt (A∗)] + E [Kt (A∗)]− rAt
)

]
≤
√
32n (M +N) log (1/δ) + 4n2 (M +N) δ. (23)
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5 SIMULATION EXPERIMENTS

In this section, a smart contract consumption experiment
is first established. Then the CVTOM parameters are set
up. Subsequently, the algorithms employed for comparison
and the dimensions for evaluating their performance are
introduced. Finally, six sets of experiments are listed, and
the results are elucidated.
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5.1 The Implementation of Smart Contract

Inspired by Wang et al. work [39], this experiment is con-
ducted on Ethernet in order to verify the gas cost of the
voting mechanism. As Fig. 5 shows, four committee mem-
bers were given the authority to vote. A smart contract is
designed to vote for the best performance task-offloading
policy in each round. The test platform is Etherscan and the
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Transaction Record
Hash:0x767eebfc47ac68402d566da2911778ffa1c7475916332c4904aad

48ab9c04f55

Block Number: 5866024

Fee Recipient:0xE276Bc378A527A8792B353cdCA5b5E53263DfB9e

Time:May-09-2024 07:36:00 AM +UTC

Gas Used:29,997,171(99.99%)

Burnt Fees: 0.131361029626669398 ETH

Deploy Committee Member

Smart Contract Consumption

Hash:0xc91…22ebd

Gas:21229

Transaction Cost:21064

Block Number: 5865998

Remix VM: London

Account:0x5B38Da6a701c568545dCfcB0

3FcB875f56beddC4

Fig. 5. Smart Contract performance. Its hash address is
0xAc9B50E87B2F29CD73FEa22e69FFFf5018538C22 and
the access address is https://sepolia.etherscan.io/address/
0xac9b50e87b2f29cd73fea22e69ffff5018538c22. Part of the details are
shown in this figure.

test environment is Remix VM (London). The voting perfor-
mance, e.g., average gas cost, transaction cost, and latency
for the execution of the smart contracts are 21229, 21064, and
1ms, respectively. The state of the blockchain network, e.g.,
average block size, and block reward is 152,888 bytes and
0.068985570191692329 ETH respectively.

5.2 The CVTOM Parameters Setting
Consider a CVTOM consisting of 5 stable servers (also
denoted as committee members) and 15 temporary servers.
Each stable server has voting function parameters α1, α2

randomly selected from the range 0.4 to 0.6. The energy
charging standard e1, e2 are denoted as 1. Following the vot-
ing function, committee members assess the performance
of various task-offloading policies and vote for the optimal
one. The task processing capacity of these servers ranges
from 7.5MB/s to 15MB/s. For TSAPO, the prior conjugate
distribution is set as Gaussian-Gaussian with a predictable
variance based on empirical data, while the mean value
remains unknown. The control parameters of TSAPO, ξc, ξd,
are typically set as 1 in most experiments, except for specific
testing scenarios in Fig. 12. Referring to [40], the CPU fre-
quency of servers ranges from 3GHz to 5GHz, and the CPU
cycle required to handle a one-bit task is set to 1000. The
system’s channel bandwidth varies from 15kHz to 30kHz,
and the channel gain ranges from 0.625 to 0.875 [41]. The
cost of computing resources stands between $0.02 and $0.03
[36]. The signal noise power is fixed at 50W.

Consider tasks generated in each round following a Pois-
son distribution with a parameter λ of 20. Their size varies
randomly between 60MB and 100MB. Tasks are generated
under two models. The Delay model includes all tasks that
are sensitive to delays. The Mix model includes tasks that
are delay-sensitive as well as tasks that are budget-sensitive.

5.3 Evaluation Dimensions & Baseline Algorithms
Under the CVTOM system, we evaluate the performance
of the TSAPO algorithm and compare the results with
modified algorithms from existing studies across different
dimensions:

1) Win Rate. It shows the likelihood of a policy created
by a specific algorithm being the winner as shown
in Fig. 1. This probability is influenced by various
parameters of voting functions.

2) Optimal Rate [15, 32]. It denotes the ratio of optimal
server selection to total servers. The higher, the
better. In Fig. 11, the optimal rate aligns with the
rate in each round, while the others represent the
rate across the entire time horizon.

3) Total Delay [24, 26]. It makes decisions based on the
delay in executing all tasks. The lower, the better.

4) Total Budget Cost [36]. It makes decisions based on
the task execution budget of all collected tasks. The
lower, the better.

5) Task Dropping Rate. It is based on the proportion
of tasks facing higher execution delays or budget
deadlines. It also correlates with the severity of the
penalty. The lower, the better.

6) Idle Rate. It denotes the ratio of working time to
idle time of an edge server before it is disconnected.
The idle rate level reflects the algorithm’s resource
utilization within the system.

The baselines are MAB-based algorithms including UCB
Series, Greedy Modified, and Successive Elimination, and
non MAB-based algorithm, Genetic Algorithm (GA).

UCB Series is an adaptation of UCB1, such as C-UCB, D-
UCB [17] which prioritize previous or recent performance,
and AW-CUCB [18]. As shown in Fig. 3, the UCB Series
algorithm selects the server with the highest upper confi-
dence bound for processing after the initial four rounds of
exploration.

Greedy Modified is based on biased greed, with exam-
ples like S-OAMC [42] and truthful greedy [43] utilizing the
greedy principle for resource offloading. As shown in Fig. 3,
the algorithm relies on ϵ-Greedy. If ϵ ≥ 0.4, designate the
target server using the UCB1 algorithm. Otherwise, select
a server randomly as the target. Traditional MAB-based
algorithms, due to lack of parallelism, could handle only one
task per round, dropping the rest. This method is inefficient,
leading to a high rate of task drops and server idle time.

In Fig. 4 (left), the elimination principle aligns with the
upper confidence bound of each server, akin to the Server
Modification algorithm. Nevertheless, Successive Elimina-
tion still encounters prolonged server idle time with an
increasing number of servers, potentially assigning tasks
repeatedly to underperforming servers.

For each GA experiment, the natural selection is
based on whether individual genies contain a faster task-
offloading policy. Each genie is the task-offloading times
for the corresponding edge server. There is no new server
added, the mutation probability is 0.01 and the round is
the entire process of GA including selection, crossover, and
mutation.

5.4 Experiment Results
The numerical experiments consist of eight parts. The first
experiment, depicted in Fig. 6, aims to validate the prob-
ability of the TSAPO algorithm winning the voting across
various models. The second experiment, illustrated in Fig. 7,
demonstrates the speed of identifying the optimal server
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(a) Delay Model (b) Mix Delay

Fig. 6. TSAPO Win Rate Performance in Different Task Generating
Models.

(a) Delay Model (b) Mix Model

Fig. 7. TSAPO Optimal Rate Performance in Different Task Generating
Models.

under the strong assumption that the algorithm always
wins. The third and fourth experiments, depicted in Fig. 8
and Fig. 9, assess the computational resources and cost-
effectiveness of TSAPO. The fifth experiment, shown in
Fig. 10, seeks to evaluate the cost efficiency of TSAPO in
diverse models. The sixth experiment, displayed in Fig. 11,
aims to confirm that TSAPO can effectively balance ex-
ploration and exploitation for newly incorporated servers
in the system. The seventh experiments, displayed in Fig.
12 aim to ascertain the validity of setting ξd, ξc to 1. The
final experiment, displayed in Fig. 13, seeks to illustrate the
utilization of computational resources within the system by
each algorithm.

Fig. 6 depicts the Win Rate performance of the TSAPO
algorithm compared to other algorithms. Budget Weights
are randomly sampled within [1, 0.5], while Delay Weights
are randomly sampled within [0, 0.5] for each committee
member. The TSAPO algorithm’s remarkable capacity for
parallel task processing allows it to excel in time efficiency.
The win rate of the TSAPO algorithm notably rises, espe-
cially in the Delay Model, with an increase in the delay
weight within the voting function.

Fig. 7 illustrates the Optimal Rate performance of the al-
gorithms. While the TSAPO doesn’t demonstrate a favorable
optimal rate performance compared to the UCB Series, the
cost of utilizing UCB Series is significantly higher, nearly
1000% more than the TSAPO. The TSAPO selects edge
servers for each task only after receiving feedback, and the
entire task allocation process is sequential. Consequently,
UCB Series, Modified Greedy, and GA result in a notably
high total delay, as depicted in Fig. 8 and Fig. 9. In contrast,
the TSAPO achieves the shortest task processing duration
due to its parallel task allocation and ability to promptly ad-
just parameters in comparison to the successive elimination
algorithm. The number of times the successive elimination
algorithm selects the optimal server is lower than that of the

(a) Delay Performance (b) Budget Performance

Fig. 8. TSAPO Resources Saving Performance in the Delay Model.

(a) Delay Performance (b) Budget Performance

Fig. 9. TSAPO Resources Saving Performance in the Mix Model.

TSAPO because it only processes task feedback at the end
of each round.

(a) Delay Model (b) Mix Model

Fig. 10. TSAPO Pentaly Performance.

(a) Delay Model (b) Mix Model

Fig. 11. TSAPO Performance Under Server Online/Offline Environment.
Moreover, as depicted in Fig. 8 and Fig. 9, the TSAPO

demonstrates acceptable cost-saving capabilities in contrast
to the UCB Series at 100 rounds, with approximately 114%
and 115% in both the Delay Model and Mix Model. Fur-
thermore, in the Mix Model, the TSAPO outperforms the
Successive Elimination approach and non-Mab-based GA
algorithms in delay performance beyond 60 rounds.

The purpose of Fig. 10 is to evaluate the task-dropping
rate with TSAPO and successive elimination. Results from
the Delay model indicate a more stable performance with
a lower task-dropping rate compared to the Mix model.
TSAPO performs better on both fronts as the least effi-
cient servers remain idle. Fig. 11 aims to assess TSAPO’s
stability with online server addition and temporary server
offline scenarios. In the first 70 rounds, a new tempo-
rary server is added every 10 rounds, with a one per-
cent chance of a temporary server offline in subsequent
rounds. Results from the Delay model show greater stability
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(a) Delay Model (b) Cost Model

Fig. 12. TSAPO Performance Under Different ξd, ξc setting.

Fig. 13. TSAPO Idle Rate Performance.

than the Mix model, with the rate-down trend attributed
to increased server quantity.

Fig. 12 illustrates that setting ξd and ξc to 1 yields the
best performance compared to other values. We tested this
in both the delay model and the cost model. The reason
for this outcome is that if ξd and ξc are set to higher
values, the equations in Alg. 2, lines 5 and 12, will produce
a wider confidence bound, preventing any servers from
being eliminated. This would result in behavior similar to
a random algorithm. In contrast, if ξd and ξc are set too
low, the selection frequency of the remaining servers with
no “delay None” or “budget None” would have negligible
impact on the confidence bound of their performance. This
would lead to rapid convergence of the delay or cost es-
timation performance, causing insufficient exploration and
potentially eliminating the best-performing server.

Fig. 13 illustrates the utilization of computational re-
sources within the system by each algorithm. The environ-
ment for Fig. 13 is set up such that all servers within the
environment are stable servers and the case of temporary
server connections is not considered. The number of rounds
is 100. According to Fig. 13, TSAPO has the best perfor-
mance with the lowest idle rate.

6 CONCLUSION

To fully utilize computing resources and reduce task ex-
ecution delay and budget costs for various sensitive ap-
plications such as augmented reality or virtual reality, we
introduced the innovative system, CVTOM. In this system,
where server numbers were uncertain and key factors un-
predictable, we adopted a model inspired by the consortium
blockchain network principle. A group of servers formed a
committee to collectively train and vote on task-offloading
policies, with all task execution data recorded to mitigate
risks from malicious servers. We then transformed the core
issue into the regret model. Our proposed solution, TSAPO,

aimed to optimize voting outcomes and minimize multi-
ple objectives. We also established the upper bound of its
regret through rigorous mathematical analysis. Simulation
experiments demonstrated that TSAPO, compared to tra-
ditional MAB-based algorithms, significantly improved the
optimal rate and reduced task execution delays by utilizing
a parallel task allocation policy and promptly processing
task feedback information.

In future work, we will address the problem of prioriti-
zation between tasks. We will explore the issue of contention
among users for edge server usage and suggest Nash equi-
librium policies to enhance the existing algorithm.
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