
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024 2747

Online Container Scheduling With Fast Function
Startup and Low Memory Cost in Edge Computing
Zhenzheng Li , Jiong Lou , Member, IEEE, Jianfei Wu , Jianxiong Guo , Member, IEEE, Zhiqing Tang ,

Member, IEEE, Ping Shen , Weijia Jia , Fellow, IEEE, and Wei Zhao , Fellow, IEEE

Abstract—Extending serverless computing to the edge has
emerged as a promising approach to support service, but startup
containerized serverless functions lead to the cold-start delay.
Recent research has introduced container caching methods to
alleviate the cold-start delay, including cache as the entire
container or the Zygote container. However, container caching
incurs memory costs. The system must ensure fast function
startup and low memory cost of edge servers, which has been
overlooked in the literature. This paper aims to jointly optimize
startup delay and memory cost. We formulate an online joint
optimization problem that encompasses container scheduling
decisions, including invocation distribution, container startup,
and container caching. To solve the problem, we propose an
online algorithm with a competitive ratio and low computational
complexity. The proposed algorithm decomposes the problem into
two subproblems and solves them sequentially. Each container
is assigned a randomized strategy, and these container-level
decisions are merged to constitute overall container caching
decisions. Furthermore, a greedy-based subroutine is designed
to solve the subproblem associated with invocation distribution
and container startup decisions. Experiments on the real-world
dataset indicate that the algorithm can reduce average startup
delay by up to 23% and lower memory costs by up to 15%.

Index Terms—Serverless computing, zygote container, schedul-
ing, online optimization.

Manuscript received 31 January 2024; revised 25 June 2024; accepted
23 July 2024. Date of publication 12 August 2024; date of current version
8 November 2024. This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62272050 and Grant
62302048, in part by Guangdong Key Lab of AI and Multi-modal Data Pro-
cessing, UIC under 2023–2024 Guangdong Education Department Grants, in
part by Zhuhai Science-Tech Innovation Bureau under Grant 2320004002772,
and in part by the Interdisciplinary Intelligence Super Computer Center of
Beijing Normal University, Zhuhai. Recommended for acceptance by W. Li.
(Corresponding author: Zhiqing Tang.)

Zhenzheng Li and Jianfei Wu are with the School of Artificial Intelli-
gence, Beijing Normal University, Beijing 100875, China, and also with
the Institute of Artificial Intelligence and Future Networks, Beijing Normal
University, Zhuhai 519087, China (e-mail: zhenzhengli@mail.bnu.edu.cn;
jianfeiwu@mail.bnu.edu.cn).

Jiong Lou is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
lj1994@sjtu.edu.cn).

Jianxiong Guo and Weijia Jia are with the Institute of Artificial Intelligence
and Future Networks, Beijing Normal University, Zhuhai 519087, China, and
also with Guangdong Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China (e-mail:
jianxiongguo@bnu.edu.cn; jiawj@bnu.edu.cn).

Zhiqing Tang and Ping Shen are with the Institute of Artificial Intelligence
and Future Networks, Beijing Normal University, Zhuhai 519087, China
(e-mail: zhiqingtang@bnu.edu.cn; iafn@bnu.edu.cn).

Wei Zhao is with Shenzhen University of Advanced Technology, Shenzhen
518055, China (e-mail: weizhao86@outlook.com).

Digital Object Identifier 10.1109/TC.2024.3441836

I. INTRODUCTION

EXTENDING serverless computing [1], [2], [3] to edge
computing [4], [5] represents a promising approach to

support service. As an innovative Function-as-a-Service (FaaS)
paradigm, serverless computing attains scalability by decom-
posing a complex monolithic application into smaller container-
ized functions [6]. In this paradigm, as illustrated in Fig. 1, when
the serverless functions are invoked, ❶ they are first distributed
to suitable edge servers. Subsequently, ❷ the corresponding
containers are started up to host and execute functions. After
execution, ❸ the containers become idle and are recycled1 to
conserve hardware resources [8]. However, the startup of con-
tainerized functions entails numerous initialization operations,
leading to the well-known problem of cold-start delay [9], [10].
Statistics substantiate that cold-start delay varies from a few
hundred milliseconds to a few seconds, comparable to the func-
tion execution duration [11], [12]. Consequently, reducing the
cold-start delay in serverless computing is critically significant.

Many existing works use caching methods to reduce the
cold-start delay [13], [14]. They cache the entire idle container
(① in Fig. 1) for serving the subsequent function invocations,
which incurs negligible warm-start delay. However, it results in
significant memory consumption, which is detrimental to the
comparative resource limitations of the edge servers. Recent
works reduce memory consumption by caching as the Zygote
containers [15], [16] (② in Fig. 1). The Zygote2 is a special
container that pre-imports public packages shared among cer-
tain containers, thus reducing memory consumption compared
to caching the entire container. Moreover, Zygotes can serve as
“parent containers” for these containers. When a function is in-
voked, the container starts up by importing the required private
packages onto the Zygote instead of starting from scratch. This
approach effectively accelerates the startup process compared
to cold-start.

However, it is not prudent to indiscriminately replace other
container caching options with Zygotes. As shown in Fig. 1,
different container caching decisions impact subsequent deci-
sions regarding invocation distribution and container startup:

1From the perspective of container caching, recycling is equivalent to
choosing ③ not-cache. Recycle is equivalent to kill and destroy, as used in
some papers [7].

2Notably, in contrast to the container, the Zygote can not directly host func-
tion. This paper refers to the Zygote container as “Zygote” for introductory
purposes.

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-7661-1922
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0009-0000-6209-029X
https://orcid.org/0000-0002-0994-3297
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0009-0004-2195-525X
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0002-6268-2559
mailto:zhenzhengli@mail.bnu.edu.cn
mailto:jianfeiwu@mail.bnu.edu.cn
mailto:lj1994@sjtu.edu.cn
mailto:jianxiongguo@bnu.edu.cn
mailto:jiawj@bnu.edu.cn
mailto:zhiqingtang@bnu.edu.cn
mailto:iafn@bnu.edu.cn
mailto:weizhao86@outlook.com

2748 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

Fig. 1. Container scheduling to optimize startup delay and memory cost.

① Cache: The entire container is cached, which incurs neg-
ligible warm-start delay for subsequent invocation but at the
expense of substantial memory consumption [12]; ② Cache
as the Zygote: This incurs a relatively small help-start delay
(inevitable delay to import private packages) for subsequent
invocation but involves consuming memory resources [16]; ③
Not-cache: The container is recycled, which has no memory
consumption but at the cost of significant cold-start delay for
subsequent invocation. If the subsequent invocation arrives at
short intervals (e.g., t1 in Fig. 1), caching the entire container
emerges as the preferred decision as it can bring negligible
warm-start delay and small memory cost. Memory cost refers
to the product of memory consumption and duration, which
can be regarded as the price the system pays for reserving
the idle containers and the Zygotes in return for accelerating
the startup for subsequent invocations. Conversely, in another
situation (e.g., t2 in Fig. 1), not-cache is more advantageous due
to the substantial memory costs associated with caching over
a long duration. Therefore, appropriate container scheduling
decisions are required to ensure fast function startup and low
memory cost of the edge servers [17], [18], which has been
overlooked in the literature.

To fill in such gaps, this paper aims to optimize startup
delay and memory cost jointly by formulating and solving an
online joint optimization problem. The objective of the opti-
mization problem is to make container scheduling decisions
to minimize startup delay and memory cost. These decisions
include invocation distribution, container startup, and container
caching. However, solving this problem is challenging due to
the following reasons. First, considering the online nature of
this problem, decisions must be made without prior knowledge
of future function invocation patterns. Second, the complexity
of decision variables and constraints makes solving it as a whole
incur high computational costs. All these challenges contribute
to the complexity of the optimization problem.

To solve the problem, this paper proposes an Online Con-
tainer Scheduling (OCS) algorithm. OCS decomposes the prob-
lem into two subproblems to reduce its complexity: 1) De-
termining invocation distribution and container startup based
on the available containers; 2) Determining container caching
decisions. We analogize the container caching for a single

container to the complex variant of the ski rental problem [19],
[20], [21]. Then, a randomized strategy of a single container is
proposed without prior knowledge of future function invocation
patterns. The caching decisions are made based on the ran-
domized strategy. OCS merges these container-level decisions
to constitute overall container caching decisions. Afterward, a
greedy-based subroutine is designed to solve the subproblem
associated with invocation distribution and container startup
decisions. OCS has theoretically guaranteed performance and
low computational complexity compared to existing work. To
illustrate its effectiveness, a rigorous analysis is conducted to
prove the OCS’s competitive ratio and computational complex-
ity. Moreover, experiments are conducted based on the real-
world dataset. The experimental results illustrate the superior
performance of the OCS. Our contributions can be summarized
as follows:

• This paper aims to optimize startup delay and memory cost
jointly. We formulate an online joint optimization problem
concerning the container scheduling.

• To solve the problem, this paper proposes an OCS al-
gorithm with a competitive ratio and low computational
complexity. OCS decomposes the problem into two sub-
problems and solves them sequentially.

• Experiments are carried out based on the real-world
dataset. OCS can reduce up to 23% of the average startup
delay and up to 15% of the memory cost.

The remainder of the paper is organized as follows. Section II
reviews related work. Section III details the system model and
problem formulation. Sections IV and V present the randomized
strategy and the online algorithm, respectively. Section VI eval-
uates performance, while Section VII discusses the algorithm.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Serverless computing: Serverless computing [1] has gar-
nered substantial attention as a promising service-supporting
paradigm. In recent years, various containerized serverless
computing platforms have been proposed to achieve diverse
objectives, including better resource efficiency [22], reduced
provisioning costs [23], high-concurrency [7], decentralization
[24], and lightweight isolation [25]. To reduce the container
deployment time, Tang et al. [26] and Lou et al. [27] introduce
layer-aware container scheduling algorithms. In Serverless, the
container is recycled when the function execution is complete,
and the resources allocated to the container are released. This
appeals to the resource-limited edge servers. As a result, recent
studies extend serverless computing to the edge to support edge
services [28], [29], [30]. Despite the distinct advantages of
serverless computing, it faces the well-known issue of cold-
start, a concern overlooked by these works.

Cold-start problem: Considerable effort has been devoted
to addressing the cold-start problem. The cold-start problem
can be alleviated through container caching [12], [14], [31],
[32], but at the expense of memory consumption. Moreover,
Several scheduling strategies have been proposed to miti-
gate cold-start, including considering dependencies between

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2749

TABLE I
MAIN NOTATIONS

Parameters Definition

T Set of time slots
S Set of servers
I Set of Zygotes
K Set of containers
λk
t Number of type-k function invocations

rk Memory consumption of type-k container
ri Memory consumption of type-i Zygote
Rs Memory capacity of server s
eks,t Number of type-k containers cached on server s
qis,t Number of type-i Zygotes cached on server s

Decisions Definition

uk
s,t Number of type-k invocations distributed to server s

vks,t Number of Zygotes used to create the type-k containers
on server s

wk
s,t Number of cached type-k containers recycled when mem-

ory is insufficient on server s
xk
s,t Number of type-k containers to be cached as the Zygotes

on server s
yks,t Number of type-k containers to be recycled on server s
zis,t Number of type-i Zygotes to be recycled on server s

functions [33], runtime provisioning [34], and warm container
selection [35]. To enhance memory efficiency, recent studies
propose serverless computing platforms empowered by Zygotes
[15], [16]. Oakes et al. [15] generalize Zygote provisioning and
construct SOCK, a streamlined container and package-aware
caching system. Li et al. [16] design resource-friendly Zygotes
and mitigate cold-start delay by caching as the Zygotes that
other functions can use. Moreover, Li et al. [36] investigate the
Zygote generation and pre-warming for fast function startup in
a limited resource edge cloud.

However, none of the existing studies investigate how to effi-
ciently schedule containers and Zygotes to jointly optimize the
memory cost and startup delay without prior knowledge of fu-
ture function invocation patterns. Given the resource limitations
of edge servers, appropriate container scheduling decisions are
required to ensure fast function startup and low memory cost.
To fill such a gap, this paper formulates a joint optimization
problem and proposes an OCS algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the configuration of an edge cluster, which
comprises a set S =

{
1, · · · , |S|

}
of servers, each equipped

with a finite memory capacity denoted as Rs, where s ∈ S .
The system works in a discrete-time manner, where the time
span is denoted as T = {1, 2, · · · , |T |}. The duration of each
time slot t ∈ T is determined by the function invocation pattern,
ensuring that each function can be serviced within one slot
[14]. The notation K =

{
1, · · · , |K|

}
denotes the set of contain-

ers. Notably, each container corresponds uniquely to a specific
serverless function, rendering K suitable for representing the set
of serverless functions. Zygote [15], [16], a “parent container”

for certain containers, contains a bare basic container and pre-
import public packages shared among these “child containers”.
I =

{
1, · · · , |I|

}
is used to represent the set of Zygotes. We

divide the set of containers into disjoint subsets denoted as
Ki, such that K =

⋃
i∈I Ki. These containers share common

public packages within each subset Ki. Consequently, type-i
Zygote can serve as “parent containers” for the container in Ki

by importing private packages of that container to create the
corresponding container.

The number of type-k function invocations generated at t is
denoted as λk

t , where k ∈ K. These function invocations will
be distributed to the suitable servers, wherein the servers use
the corresponding container to host and execute the functions.
The notation uk

s,t denotes the number of type-k invocations
distributed to server s at t. In the distribution process, it is
essential to ensure that each function invocation is distributed
to one server:

∑

s∈S
uk
s,t = λk

t , ∀k,∀t. (1a)

The notations eks,t and qis,t are employed to represent the
number of type-k containers and the number of type-i Zygotes
cached on server s, respectively. Following the distribution, a
decision needs to be made on whether to start the respective
container to host and execute the function. For each distributed
type-k (where k ∈ Ki) invocation, multiple options are avail-
able, as follows: 1) Warm-start: Directly utilize a cached con-
tainer to host the function; 2) Help-start: Import the private
packages into the type-i Zygote to create a type-k container;
3) Cold-start: Start up a type-k container from scratch.

The notation vks,t signifies the number of Zygotes used to cre-
ate type-k containers on the server s. wk

s,t denotes the number of
cached type-k containers that are recycled to make room for cre-
ating new containers on the server s. Note that wk

s,t should not
exceed the number of unused cached containers. Furthermore,
it is essential to ensure that vks,t concerning two constraints: it
should not exceed the number of type-k invocations distributed
to server s and must not surpass the number of type-i Zygotes
cached on server s:

wk
s,t ≤max{0, eks,t − uk

s,t}, ∀k,∀s,∀t, (2a)

vks,t ≤ uk
s,t, ∀k,∀s,∀t, (2b)

∑

k∈Ki

vks,t ≤ qis,t, ∀i, ∀s,∀t. (2c)

Due to the constraints on the memory capacity of server s, it
should be guaranteed that the memory usage by both containers
and Zygotes on server s remains within the memory capacity:

∑

k∈K
rk
(
max

{
uk
s,t, e

k
s,t

}
− wk

s,t

)

+
∑

i∈I
ri
(
qis,t −

∑

k∈Ki

vks,t
)
≤Rs, ∀s,∀t. (3a)

Functions are executed within their designated containers
until completion. Following this, these containers enter an idle
state. For the idle containers, the system needs to make deci-
sions regarding caching the entire containers, caching as the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

2750 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

Zygotes, and not caching (i.e., recycle containers). We introduce
the following variables to represent these decisions. xk

s,t signi-
fies the number of type-k containers to be cached as the Zygotes
on the server s. yks,t and zis,t denotes the number of type-k
containers and the number of type-i Zygotes to be recycled
on server s, respectively. Consequently, the number of type-k
containers cached on server s can be calculated as follows:

eks,t =max
{
uk
s,t−1, e

k
s,t−1

}
− xk

s,t−1 − yks,t−1 − wk
s,t−1,

(4a)

eks,t ≥ 0, ∀k,∀s,∀t. (4b)

The number of type-i Zygotes cached on server s can be
calculated by the following equation:

qis,t = qis,t−1 − zis,t−1 −
∑

k∈Ki

vks,t−1 +
∑

k∈Ki

xk
s,t−1, (5a)

qis,t ≥ 0, ∀i, ∀s,∀t. (5b)

B. Problem Formulation

Caching either the entire containers or the Zygotes incurs
memory cost, providing the advantage of mitigating container
startup delay for subsequent function invocations. For the
type-k container, caching will incur a significant memory con-
sumption denoted as rk. If a cached type-k container hosts a
subsequent type-k function invocation, the warm-start delay
is considered negligible [16]. In contrast, cache as the type-i
Zygote incurs a relatively lower memory consumption denoted
as ri due to the Zygote preserving only public packages. For a
subsequent type-k (type-k′, k, k′ ∈ Ki) function invocation, the
Zygote can import private packages to create the corresponding
type-k (type-k′) container to host this function, thus incurring
a help-start delay denoted as dk (dk′) [15]. The cold-start de-
lay for the type-k container startup from scratch is denoted
as ck. As discussed above, these parameters’ relationships are
0< ri < rk and ck > dk > 0.

Our research aims to optimize two categories of cost, which
play a substantial role in system performance: delay cost and
memory cost. Delay cost is proportional to the container startup
delay. The startup delay includes the help-start delay and the
cold-start delay. Thus, the startup delay at t can be quantified
using the following equation:

CD
t =

∑

s∈S

∑

k∈K
dkv

k
s,t+

∑

s∈S

∑

k∈K
ck max

{
uk
s,t − vks,t − eks,t, 0

}
.

(6a)

The memory cost is proportional to the product of mem-
ory consumption and duration, and it interprets the memory
resource price paid for reserving the containers and the Zygotes.
The memory cost at t can be expressed as the sum of the
memory consumption for all cached containers and Zygotes,
defined as follows:

CM
t =

∑

s∈S

∑

i∈I
riq

i
s,t +

∑

s∈S

∑

k∈K
rke

k
s,t. (7a)

We formulate an online joint optimization problem
that encompasses multiple decisions related to invocation

distribution, container startup, and container caching, indicated
by decision variables uk

s,t, v
k
s,t, w

k
s,t, x

k
s,t, y

k
s,t, zis,t. The

problem can be formally formulated with the following
integer program:

P: min
∑

t∈T

(
ηCD

t + CM
t

)
, (8a)

s.t. (1a), (2c), (2b), (2a), (3a), (4a), (4b), (5a), (5b), (8b)

uk
s,t, v

k
s,t, w

k
s,t, x

k
s,t, y

k
s,t, z

i
s,t ∈ N, ∀k,∀i, ∀s,∀t, (8c)

where the weight η plays a crucial role in achieving an equilib-
rium between the two cost categories.

C. Problem Analysis

To solve the problem, we aim to develop an online algorithm
with low computational complexity and provable performance
guarantees. However, this is challenging for several reasons.
Firstly, the online nature requires making decisions without
prior knowledge of future function usage patterns. Moreover,
complex decision variables and constraints hinder computa-
tional problem-solving. These aspects collectively contribute to
the complexity of the optimization problem.

To reduce complexity, the problem is required to be de-
composed. Decisions regarding invocation distribution and con-
tainer startup are based on the available containers in the current
time slot. In contrast, container caching decisions made in the
current time slot will determine the available containers in the
future. Thus, within a time slot, the problem is decomposed
into two subproblems: 1) Determining invocation distribution
and container startup based on the available container, and 2)
Determining container caching decisions. To efficiently solve
the first subproblem, a greedy-based subroutine is designed in
Section V-A.

In Section IV, the container caching subproblem is first sim-
plified by analyzing how a single container makes such deci-
sions without future information. Then, a randomized strategy is
assigned to each container. The randomized strategy determines
whether to cache the entire container, cache it as the Zygote, or
not cache it. These container-level decisions then constitute the
overall container caching decisions. Building upon the results
above, an online algorithm is proposed in Section V. This de-
composition approach effectively solves the optimization prob-
lem with low computational cost and guaranteed performance.
We prove the competitive ratio and computational complexity
in Section V-E.

IV. RANDOMIZED STRATEGY FOR A SINGLE CONTAINER

A. Observations and Insights

We first provide observations and insights about container
caching decisions for a single type-k (k ∈ Ki) container upon
it becomes idle, including whether to cache it, cache as the
Zygote, or not cache. From the container’s perspective, it re-
mains uncertain when the central controller distributes a func-
tion invocation for hosting. This process will incur an ongoing
memory cost, which is the time interval multiplied by memory
consumption. This analogies to the complex variant of a classic

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2751

Fig. 2. Illustration for the scenarios where the subsequent distributed invo-
cation corresponds to type-k and type-k′, respectively. t1k = ηdk/

(
rk − ri

)
,

t2k = η
(
ck − dk

)
/ri, and tk′ = η

(
ck′ − dk′

)
/ri as the horizontal coordi-

nates of the intersection points of these dashed lines.

ski rental problem [19], [20], [21]. In the ski rental problem, a
skier requires skiing for an unknown ski period. The skier must
opt for one of several options, each characterized by an initial
buying price (i.e., startup delay) and an ongoing cost related
to the rental price (i.e., memory consumption). Furthermore, a
more challenging aspect than the ski rental problem is that the
ski rental only provides one type of service while a Zygote can
serve any subsequent type-k′ (k′ ∈ Ki) function.

Fig. 2(a) and 2(b) show the cost of the subsequent distributed
invocation corresponds to type-k and type-k′, respectively. τ =
0 denotes the time for the container to become idle, and the
three distinct decisions are each associated with a particular
slope and intercept. Here, we assume that t1k < t2k. This usually
holds because the cold-start delay is much larger than the help-
start delay [15], [16]. In Fig. 2(b), we omit the cache choice
since it results in a memory consumption of rk, while the startup
delay remains ck′ . The black line shows the optimal choice if the
type of subsequent distributed invocation and its arrival time t
is known. However, the inherent online nature implies that the
type of subsequent distributed invocation and its arrival time
remain unknown.

To facilitate our analysis, we introduce the following con-
ception: A container designated as being in the “cache
state”, “zygote state”, and “not-cache state” signifies that it
is cached, cached as the Zygote, and recycled, respectively.
The profile [37] to a single container is denoted as P =[
P0

(
τ
)
, P1

(
τ
)
, P2

(
τ
)]

, where P0

(
τ
)
, P1

(
τ
)
, and P2

(
τ
)

cor-
responds to the probability that the container is in the “cache
state”, the “zygote state”, and the “not-cache state”, respec-
tively. For the profile, the following fundamental properties
need to be satisfied:

1) For any τ ≥ 0, there is Pn

(
τ
)
≥ 0, n= 0, 1, 2;

2) For any τ ≥ 0, it holds that
∑2

n=0 Pn

(
τ
)
= 1, in-

dicating that the container must be in one of the
defined states;

3) For any τ ≤ τ ′, it should hold that
∑m

n=0 Pn

(
τ
)
≥∑m

n=0 Pn

(
τ ′
)
. As the memory cost increases over time,

leading containers to increasingly favor transforming into
the state with low memory consumption.

In the following subsections, we derive the profile for scenar-
ios where the subsequent distributed invocation is type-k′ and

type-k, respectively. Then, we illustrate how to sample from the
profile to obtain the randomized strategy.

B. Profile for Subsequent Type-k′ Invocation

We begin by discussing the profile denoted as P k′
=[

P k′

0

(
τ
)
, P k′

1

(
τ
)
, P k′

2

(
τ
)]

in a straightforward scenario, where
the subsequent distributed invocation is type-k′, and k′ �=
k, k′ ∈ Ki. The arrival time remains uncertain. As analyzed in
Section IV-A, it is evident that “cache state” will not be chosen
(i.e., P k′

0

(
τ
)
= 0, ∀τ ≥ 0). By considering only the “zygote

state” and “not-cache state”, the problem can be simplified
into a 2-slope ski rental problem, where the buying price is
η
(
ck′ − dk′

)
, and the rental price is ri. Correspondingly, for

any arrival time t, the optimal cost for the 2-slope ski rental
problem is denoted as OPT

(
t
)
=min

{
rit, η

(
ck′ − dk′

)}
.3

Considering that P k′

0

(
τ
)
= 0 and the fundamental prop-

erty that
∑2

n=0 P
k′

n

(
τ
)
= 1, it follows that P k′

2

(
τ
)
= 1−

P k′

1

(
τ
)
. When the arrival time surpasses η

(
ck′ − dk′

)
/ri, not-

cache becomes the optimal choice. Consequently, for τ >
η
(
ck′ − dk′

)
/ri, we can ascertain that P k′

2

(
τ
)
= 1. Further-

more, we introduce p
(
τ
)
= d

dτ P
k′

2

(
τ
)
, which signifies the

probability of transform from the “zygote state” to the “not-
cache state” at τ . Similar to [38], [39], let q

(
t
)

denote the
probability density function of the arrival time t. We de-
fine the expected arrival time for the distributed type-k′ in-

vocation as μk′ =
∫ η

(
ck′−dk′

)
/ri

0 tq
(
t
)
dt+ qψψ, where qψ =∫ +∞

η(ck′−dk′)/ri
q
(
t
)
dt and ψ =

∫ +∞
η
(
ck′−dk′

)
/ri

tq
(
t
)
/qψdt, and

t > η
(
ck′ − dk′

)
/ri with associated probability mass qψ . For

p
(
τ
)

and q
(
t
)
, it is essential to ensure that the following con-

straints are satisfied:
∫ η

(
ck′−dk′

)
/ri

0

p
(
τ
)
dτ = 1, (9a)

∫ η
(
ck′−dk′

)
/ri

0

q
(
t
)
dt+ qψ = 1. (9b)

The expected cost for the 2-slope ski rental problem aris-
ing from the profile within 0≤ t < η

(
ck′ − dk′

)
/ri can be ex-

pressed as:

E
[
C1

(
p
(
τ
)
, t
)]

=

∫ t

0

(
riτ + η

(
ck′ − dk′

))
p
(
τ
)
dτ

+

∫ η
(
ck′−dk′

)
/ri

t

ritp
(
τ
)
dτ. (10a)

And the expected cost when η
(
ck′ − dk′

)
/ri ≤ t can be ex-

pressed as:

E
[
C2

(
p
(
τ
)
, t
)]

=

∫ η
(
ck′−dk′

)
/ri

0

(
riτ + η

(
ck′ − dk′

))
p
(
τ
)
dτ. (11a)

3Notably, the optimal cost is reduced by a constant ηdk′ compared to the
original cost. This reduction does not impact our derivation.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

2752 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

The ratio between the expected cost and the optimal cost
which can be expressed as follows:

J
(
p, q

)
=

∫ η
(
ck′−dk′

)
/ri

0

E
[
C1

(
p
(
τ
)
, t
)]

OPT
(
t
) q

(
t
)
dt

+ qψ
E
[
C2

(
p
(
τ
)
, t
)]

OPT
(
t
) (12a)

=

∫ η
(
ck′−dk′

)
/ri

0

E
[
C1

(
p
(
τ
)
, t
)]

rit
q
(
t
)
dt

+ qψ
E
[
C2

(
p
(
τ
)
, t
)]

η
(
ck′ − dk′

) . (12b)

The objective is to determine the profile based on p
(
τ
)

that
minimizes the ratio J(p, q). The optimization problem can be
obtained as follows:

min
p

max
q

J
(
p, q

)
,

s.t. (9a),(9b) , (13a)

μk′ =

∫ η
(
ck′−dk′

)
/ri

0

tq
(
t
)
dt+ qψψ. (13b)

To tackle this optimization problem, we establish its dual
problem for the maximization problem [40], which transforms
it into a linear program problem characterized by two equality
constraints. The Lagrangians related to the maximization prob-
lem are as follows:

L
(
q, λ1, λ2

)
= λ1 + λ2μk′

+

∫ η
(
ck′−dk′

)
/ri

0

(
E
[
C1

(
p
(
τ
)
, t
)]

rit
− λ1 − λ2t

)

q
(
t
)
dt

+ qψ

(
E
[
C2

(
p
(
τ
)
, t
)]

η
(
ck′ − dk′

) − λ1 − λ2ψ

)

, (14a)

where the Lagrange multiplier λ1 and λ2 are correspond to
the constraint (9b) and constraint (13b), respectively. The dual
function g

(
λ1, λ2

)
= supqL

(
q, λ1, λ2

)
. Therefore, the dual

problem becomes:

min
λ1,λ2

λ1 + λ2μk′ , (15a)

s.t.
E
[
C1

(
p
(
τ
)
, t
)]

rit
− λ1 − λ2t= 0,

0≤ t < η
(
ck′ − dk′

)
/ri, (15b)

E
[
C2

(
p
(
τ
)
, t
)]

η
(
ck′ − dk′

) − λ1 − λ2ψ = 0, (15c)

λ1, λ2 ≥ 0. (15d)

Since the constraint (15b) is valid for all 0≤ t < η
(
ck′ −

dk′
)
/ri, we can perform a double differentiation with respect

to t and replace t with τ to obtain:

d

dτ
p
(
τ
)
=

ri

η
(
ck′ − dk′

)
(
p
(
τ
)
+ 2λ2

)
. (16a)

This is a first-order ordinary differential equation, the solu-
tion of which is:

p
(
τ
)
= ρeriτ/η

(
ck′−dk′

)
− 2λ2, (17a)

Upon introducing constraint (9a), we can derive ρ=
(
ri +

2λ2η
(
ck′ − dk′

))
/η

(
ck′ − dk′

)(
e− 1

)
. Consequently, the re-

maining undetermined parameter in p
(
τ
)

is λ2. To satisfy the
fundamental property, there is λ2 ≤ ri/2η

(
ck′ − dk′

)(
e− 2

)
.

By further substituting p
(
τ
)

into constraints (15b) and (15c),
we can obtain the following equivalent dual problem:

min
λ1,λ2

λ1 + λ2μk′ , (18a)

s.t.
2η

(
ck′ − dk′

)(
2− e

)

ri
(
e− 1

) λ2 +
e

e− 1
= λ1, (18b)

(η
(
ck′ − dk′

)(
3− e

)

ri
(
e− 1

) − ψ
)
λ2 +

e

e− 1
= λ1, (18c)

0≤ λ1, 0≤ λ2 ≤
ri

2η
(
ck′ − dk′

)(
e− 2

) , (18d)

where constraints (18b) and (18c) are equivalent to constraints
(15b) and (15c), respectively. It is known that the solution to
the linear programming problem forms a convex polyhedron,
where each basic feasible solution corresponds to a vertex of
this polyhedron and vice versa [40]. Therefore, the solutions
are as follows:

1) λ1 = e/
(
e− 1

)
, λ2 = 0

2) λ1 = 1, λ2 = ri/2η
(
ck′ − dk′

)(
e− 2

)

The values of the objective function based on these solu-
tions are e/

(
e− 1

)
and 1 + μk′ri/2η

(
ck′ − dk′

)(
e− 2

)
, re-

spectively. It is noteworthy that when μk′ ≤ 2η
(
ck′ − dk′

)(
e−

2
)
/ri

(
e− 1

)
, the latter value of the objective function is

smaller than the former. Hence, for 0≤ τ ≤ η
(
ck′ − dk′

)
/ri,

p
(
τ
)

can be derived by substituting λ2 into (17a) as follows:

p
(
τ
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ri

η
(
ck′ − dk′

)(
e− 2

)
(
eriτ/η

(
ck′−dk′

)
− 1

)
,

μk′ ≤ 2η
(
ck′ − dk′

)(
e− 2

)
/ri

(
e− 1

)

ri

η
(
ck′ − dk′

)(
e− 1

)eriτ/η
(
ck′−dk′

)
,

μk′ > 2η
(
ck′ − dk′

)(
e− 2

)
/ri

(
e− 1

)
.
(19a)

When μk′ ≤ 2η
(
ck′ − dk′

)(
e− 2

)
/ri

(
e− 1

)
, P k′

2

(
τ
)

is ob-
tained by integrating p

(
τ
)

as follows:

P k′

2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eriτ/η
(
ck′−dk′

)
− riτ/η

(
ck′ − dk′

)
− 1

e− 2
,

0≤ τ < η
(
ck′ − dk′

)
/ri

1, η
(
ck′ − dk′

)
/ri ≤ τ.

(20a)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2753

Similarly, when μk′ > 2η
(
ck′ − dk′

)(
e− 2

)
/ri

(
e− 1

)
,

P k′

2

(
τ
)

is obtained as follows:

P k′

2

(
τ
)
=

⎧
⎪⎨

⎪⎩

eriτ/η
(
ck′−dk′

)
− 1

e− 1
, 0≤ τ < η

(
ck′ − dk′

)
/ri

1, η
(
ck′ − dk′

)
/ri ≤ τ.

(21a)

For different μk′ , we can compute P k′

2

(
τ
)

based on (20a)
or (21a). μk′ is determined by the service instance and will be
expounded in the next section. The primary distinction between
(20a) and (21a) lies in that (20a) prefers to persist in a high
memory consumption (low startup delay) state. The smaller
μk′ means that the arrival time will be faster. Consequently,
the profile (20a) is more suitable for scenarios where μk′ is
smaller. Combined with P k′

0

(
τ
)
= 0 and P k′

2

(
τ
)
= 1− P k′

1

(
τ
)

analyzed previously, we obtain a profile P k′
.

C. Profile for Subsequent Type-k Invocation

The profile P k =
[
P k
0

(
τ
)
, P k

1

(
τ
)
, P k

2

(
τ
)]

is explored in a
more complex scenario in this subsection, where the subsequent
distributed invocation is type-k, and k ∈ Ki, yet its arrival time
remains uncertain. As analyzed in Section IV-A, this is analog to
a 3-slope ski rental problem. We simplify it into two separate 2-
slope ski rental problems. In the first, the rental price is denoted
as rk − ri with a buying price of ηdk, while in the second,
the rental price is represented as ri with a buying price of
η
(
ck − dk

)
. With this simplification, the profile P k can be

derived based on the results presented in Section IV-B.
For the first 2-slope ski rental problem, the corresponding

p
(
τ
)

represents the probability of leaving the “cache state”.
Hence, the integral over p

(
τ
)

in this situation is P k
1

(
τ
)
+

P k
2

(
τ
)
. For the second 2-slope ski rental problem, the corre-

sponding p
(
τ
)

indicates the probability of entering the “not-
cache state”. Hence, the integral over p

(
τ
)

in this situation is
P k
2

(
τ
)
. When μk ≤ 2ηdk

(
e− 2

)
/
(
rk − ri

)(
e− 1

)
, the profile

is obtained by substituting the parameters (rental price and
buying price) into (20a) as follows:

P k
1

(
τ
)
+ P k

2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e

(
rk−ri

)
τ/ηdk −

(
rk − ri

)
τ/ηdk − 1

e− 2
,

0≤ τ < ηdk/
(
rk − ri

)

1, ηdk/
(
rk − ri

)
≤ τ

(22a)

P k
2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eriτ/η
(
ck−dk

)
− riτ/η

(
ck − dk

)
− 1

e− 2
,

0≤ τ < η
(
ck − dk

)
/ri

1, η
(
ck − dk

)
/ri ≤ τ

(22b)

When 2ηdk
(
e− 2

)
/
(
rk − ri

)(
e− 1

)
< μk ≤ 2η

(
ck − dk

)
(
e− 2

)
/ri

(
e− 1

)
, we obtain the profile by substituting the

parameters into (21a) and (20a), respectively:

P k
1

(
τ
)
+ P k

2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e

(
rk−ri

)
τ/ηdk − 1

e− 1
,

0≤ τ < ηdk/
(
rk − ri

)

1, ηdk/
(
rk − ri

)
≤ τ

(23a)

P k
2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eriτ/η
(
ck−dk

)
− riτ/η

(
ck − dk

)
− 1

e− 2
,

0≤ τ < η
(
ck − dk

)
/ri

1, η
(
ck − dk

)
/ri ≤ τ

(23b)

When 2η
(
ck − dk

)(
e− 2

)
/ri

(
e− 1

)
< μk, the profile is

obtained by substituting the parameters into (21a) as follows:

P k
1

(
τ
)
+ P k

2

(
τ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e

(
rk−ri

)
τ/ηdk − 1

e− 1
,

0≤ τ < ηdk/
(
rk − ri

)

1, ηdk/
(
rk − ri

)
≤ τ

(24a)

P k
2

(
τ
)
=

⎧
⎪⎨

⎪⎩

eriτ/η
(
ck−dk

)
− 1

e− 1
, 0≤ τ < η

(
ck − dk

)
/ri

1, η
(
ck − dk

)
/ri ≤ τ

(24b)

According to the fundamental properties, we can induce
P k
0

(
τ
)
= 1− P k

1

(
τ
)
− P k

2

(
τ
)
. Consequently, the profile P k

can be derived based on the results above.

D. Profile and Randomized Strategy

Drawing upon the results in Sections IV-B and IV-C, the
profile for a single type-k container can be obtained as:

P = wkP
k + wk′P k′

, (25a)

where wk and wk′ are adjustable parameters and wk + wk′ = 1.
The larger the wk′ , the more likely the container will be cached
as a Zygote. As illustrated in the following section, we use these
parameters to adjust the profile (thus adjusting the randomized
strategy) based on the number of unused cached containers and
the containers that have experienced cold-start. Furthermore,
the profile satisfies the fundamental properties illustrated in
Section IV-A.

Next, we illustrate how to obtain the randomized strategy
based on the profile. The constant ξ is sampled from uniform
distribution U

[
0, 1

]
, and then we set tzygote =

{
�min

{
τ
}
�|ξ ≤∑2

n=1 Pn

(
τ
)}

, trecycle =
{
�min

{
τ
}
�|ξ ≤

∑2
n=2 Pn

(
τ
)}

. As
shown in Fig. 3(a), if the container becomes idle at t, the ran-
domized strategy is as follows: 1) Caching the entire container
at t, 2) Caching it as the Zygote at t+ tzygote, 3) Recycling
it at t+ trecycle. As the profile satisfies that trecycle ≥ tzygote,
it guarantees the strategy’s correctness. It is noteworthy that
if tzygote = trecycle or trecycle = 0, the container is recycled
directly.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

Fig. 3. The circle signifies that the container is started up to host and execute
the function, while bars of various colors denote the container’s different
states. (a) The randomized strategy is to cache the container first, caching
it as the Zygote at t+ tzygote, and finally recycling it at t+ trecycle.
(b) When a container is employed to host a function, its ongoing service
instance ends. When the container becomes idle, a new service instance
begins. (c) An example illustration, with details provided in Section V-D.

Algorithm 1 Online Container Scheduling (OCS)

Input: t, λk
t , ∀k

Output: uk
s,t, v

k
s,t, w

k
s,t, x

k
s,t, y

k
s,t, z

i
s,t, ∀k, i, s

1: Initialize uk
s,t, v

k
s,t, w

k
s,t, x

k
s,t, y

k
s,t, z

i
s,t = 0, ∀k, i, s

2: Update eks,t and qis,t by Eq. (4a) and Eq. (5a), respectively
3:

(
uk
s,t, v

k
s,t, w

k
s,t

)
= IDCS

(
λk
t , e

k
s,t, q

i
s,t, u

k
s,t, v

k
s,t, w

k
s,t

)

4: For ∀k ∈ K, update αk,t and βk,t

5: while |F|<
∑

k∈K λk
t do

6: Once execution is complete, add the container to F
7: for f ∈ F do
8: Invoke RS

(
f,H, αk,t, βk,t

)

9: Update F = F −
{
f
}

, H=H+
{
f
}

10: for h ∈H do
11: Update

(
xk
s,t, y

k
s,t, z

i
s,t

)
= TS

(
h, xk

s,t, y
k
s,t, z

i
s,t

)

V. ONLINE ALGORITHM

Based on the randomized strategy for a single container, an
OCS algorithm characterized by low computational complexity
and a provable competitive ratio is proposed in Algorithm 1.
As discussed in Section III-C, the main idea of the OCS is
to decompose the problem into two subproblems and solve
them one by one: 1) Determining invocation distribution and
container startup decisions; 2) Determining container caching
decisions. For the first subproblem, the subroutine Invocation
Distribution and Container Startup (IDCS) is invoked to solve
it in line 3. IDCS is a greedy-based subroutine. Its details will
be explained in Section V-A.

For the second subproblem, we solve it by merging container-
level decisions in lines 4 to 11. In line 4, note αk as the count
of unused cached containers and βk as the count of contain-
ers that have experienced cold-start. In line 8, the subroutine

Randomized Strategy (RS) is invoked to assign a randomized
strategy to the container within F . αk and βk are used to
determine the adjustable parameters of the profile, thus ad-
justing the randomized strategy. Subsequently, the subroutine
Transform State (TS) decides the container caching based on the
container’s randomized strategy in line 11. For each container,
TS is invoked one by one to update xk

s,t, y
k
s,t, z

i
s,t. The details

of RS and TS are given in Sections V-B and V-C, respectively.
Finally, the OCS’s computational complexity and competitive
ratio are proved in Section V-E.

A. Invocation Distribution and Container Startup

The main idea of IDCS is to distribute invocations and start
up the containers greedily, i.e., with the lowest startup delay
based on available cached containers and Zygotes. In lines 2 to
4, the invocations are distributed, and the cached containers are
employed to host functions. Subsequently, in lines 5 to 13, IDCS
employs Zygotes to create the corresponding containers for
hosting functions. Finally, in lines 14 to 22, the corresponding
containers are started up from scratch to host the remaining
undistributed invocations.

In lines 3, 7, 12, 16, and 21, IDCS ensures that constraints
(1a), (2a), (2b), (2c), and (3a) are not violated, respectively. R′

s

is the remaining memory space. qi,ks,t and qi,k
′

s,t denote the number
of type-i Zygotes transformed by type-k and type-k′ containers,
respectively. To prevent the Zygotes from being preempted, the
Zygotes (transformed by the type-k containers) are prioritized
for creating type-k containers, followed by other types. If insuf-
ficient memory space and undistributed invocations exist (lines
18 to 22), the unused cached containers must be recycled to
make room for startup containers.

To estimate the expected arrival time for the subsequent
invocation (i.e., μk), we define the service instance as shown
in Fig. 3(b). When a container is employed to host a function,
its ongoing service instance ends. Besides, when the container
becomes idle, a new service instance begins. If a container is
started from scratch, it either ends the service instance of the
recycled containers or initiates entirely new service instances.
Consequently, the time interval between the beginning and end
of a service instance is used to estimate the arrival time. As
shown in line 9 of the Algorithm 1, H is the set of the ongoing
service instances. Moreover, the priority of the containers is
essential since the containers are shared across all functions of
the same type. Priorities are assigned according to the beginning
time of their service instances. The earlier the beginning time,
the higher the priority.

B. Randomized Strategy

The subroutine RS is responsible for assigning randomized
strategy to a container. The main idea of RS is to compute the
profile P (lines 2 to 22) and subsequently sample a randomized
strategy based on the profile P (lines 23 to 25). To compute
the profile P , the parameters μk, μk′ , wk, and wk′ need to be
determined. As shown in lines 2 to 5, μk is set as the time inter-
val between the service instance’s beginning and ending time.
Note that in line 6, we reset the beginning time of the service

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2755

IDCS: Invocation Distribution and Container Startup

Input: λkt , e
k
s,t, q

i
s,t, u

k
s,t, v

k
s,t, w

k
s,t, ∀k, i, s

Output: uks,t, v
k
s,t, w

k
s,t, ∀k, s

1: Sort all k ∈ K by ck − dk in descending order
2: for

(
k, s

)
∈ K × S do

3: if λkt −
∑

s∈S uks,t > 0 then
4: Update uks,t = uks,t +min

{
λkt −

∑
s∈S uks,t, e

k
s,t

}

5: for
(
k, s

)
∈ K × S do

6: if λkt −
∑

s∈S uks,t > 0 ∧ k ∈ Ki then
7: Set ϕ=min

{
λkt −

∑
s∈S uks,t, q

i,k
s,t , �R′

s/
(
rk −

ri
)
�
}

, qi,ks,t = qi,ks,t − ϕ

8: Update uks,t = uks,t + ϕ, vks,t = vks,t + ϕ

9: for
(
k, s

)
∈ K × S do

10: if λkt −
∑

s∈S uks,t > 0 ∧ k ∈ Ki then
11: for k′ ∈ Ki do
12: Set ϕ=min

{
λkt −

∑
s∈S uks,t, q

i,k′

s,t , �R′
s/
(
rk −

ri
)
�
}

, qi,k
′

s,t = qi,k
′

s,t − ϕ

13: Update uks,t = uks,t + ϕ, vks,t = vks,t + ϕ

14: for
(
k, s

)
∈ K × S do

15: if λkt −
∑

s∈S uks,t > 0 then
16: Set ϕ=min

{
λkt −

∑
s∈S uks,t, �R′

s/rk�
}

17: Update uks,t = uks,t + ϕ

18: for
(
k, s

)
∈ K × S do

19: if λkt −
∑

s∈S uks,t > 0 ∧ k ∈ Ki then
20: for k′ ∈ Ki do
21: Set ϕ=min

{
λkt −

∑
s∈S uks,t,max{0, ek

′
s,t

−uk
′

s,t − wk′
s,t}, �rk′ max{0, ek

′
s,t − uk

′
s,t − wk′

s,t}/rk�
}

22: Update uks,t = uks,t + ϕ, wk′
s,t = wk′

s,t + ϕ

instance, which means that a new service instance begins. In
line 8, μk′ is the interval between the earliest unused type-k
cached container’s service instance beginning and the current
time.

To determine parameters wk and wk′ , we first search for the
container’s type with the highest count of undergoing cold-start
in line 6. If the type-k′ containers experience a cold start due to
the failure of timely caching the type-k containers as the Zygote
in the previous time slot (line 7), we correct the probability of
caching as the Zygote by adjusting the parameter wk′ . A larger
wk′ implies a greater likelihood to cache as the Zygote. In line 8,
The parameter wk′ is associated with the proportion of contain-
ers that experienced cold-start. Otherwise, no surplus unused
cached containers are available, or no containers undergo cold-
start. In such cases (line 15), wk is directl yset as one.

Based on the parameters, P is Computed in line 22. Finally,
in lines 23 to 25, we sample from a uniform distribution U

[
0, 1

]

to generate the constant ξ, which determines the container’s
randomized strategy (as discussed in Section IV-D).

C. Transform State

The subroutine TS executes state transform based on the
container’s randomized strategy and updates corresponding
decision variables. Lines 2 to 6 and 7 to 9 represent decisions

RS: Randomized Strategy
Input: f,H, αk,t, βk,t, ∀k
Output: tfzygote, t

f
recycle

1: Set k = Type(f), i= Type(k ∈ Ki)

2: if The service instance of f ends then
3: Set μk = t− tfbegin, update H=H−

{
f
}

4: else
5: Set μk = 0

6: Set βk′ =maxk∈Ki

{
βk

}
, tfbegin = t

7: if αk > 0 ∧ βk′ > 0 then
8: Set wk′ =min

{
1,
∑

k∈Ki
βk/

∑
k∈Ki

αk

}
,

wk = 1− wk′ , μk′ = t−min
{
tbegin

}

9: Set αk = αk − 1, βk′ = βk′ − 1

10: if μk′ ≤ 2η
(
ck′ − dk′

)(
e− 2

)
/ri

(
e− 1

)
then

11: Compute P k′
by Eq. (20a)

12: else
13: Compute P k′

by Eq. (21a)

14: else
15: Set wk′ = 0, wk = 1

16: if μk ≤ 2ηdk
(
e− 2

)
/
(
rk − ri

)(
e− 1

)
then

17: Compute P k by Eq. (22a)
18: else if 2ηdk

(
e− 2

)
/
(
rk − ri

)(
e− 1

)
< μk ≤ 2η

(
ck −

dk
)(
e− 2

)
/ri

(
e− 1

)
then

19: Compute P k by Eq. (23a)
20: else
21: Compute P k by Eq. (24a)

22: Compute the profile P by Eq. (25a)
23: Set ξ = Sample

(
U
[
0, 1

])

24: Set tfzygote =
{
�min

{
τ
}
�|ξ ≤

∑2
n=1 Pn

(
τ
)}

25: Set tfrecycle =
{
�min

{
τ
}
�|ξ ≤

∑2
n=2 Pn

(
τ
)}

TS: Transform State
Input: h, xk

s,t, y
k
s,t, z

i
s,t, ∀k, i, s

Output: xk
s,t, y

k
s,t, z

i
s,t, ∀k, i, s

1: Set k = Type(h), i= Type(k ∈ Ki)
2: if The current state is “cache state” then
3: if tpbegin + tprecycle ≤ t then
4: Transform to “not-cache state”, update yks,t =

yks,t + 1
5: else if tpbegin + tpzygote ≤ t < tpbegin + tprecycle then
6: Transform to “zygote state”, update xk

s,t = xk
s,t + 1

7: else if The current state is “zygote state” then
8: if tpbegin + tprecycle ≤ t then
9: Transform to “not-cache state”, update zis,t =

zis,t + 1

when the container is currently in a “cache state” and “zygote
state”, respectively. Lines 3 to 4 signify that the container has
surpassed its recycling time, necessitating recycling the con-
tainer. Lines 5 to 6 represent the decision that cache as the
Zygote, and the relevant decision variables are updated. Lines 8
to 9 indicate that the Zygote’s recycling time has been exceeded.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

Then, the Zygote is recycled. Other cases indicate no timeout
or the container has been recycled. Thus, no action is needed.
Notably, as long as the ongoing service instance of the container
does not end, it performs state transformation based on the
randomized strategy assigned at the beginning of the service
instance.

D. Example Illustration

As shown in Fig. 3(c), we provide an example of how the
OCS performs scheduling. At t1, three containers become idle.
The OCS determines caching decisions for each container in
each time slot based on the randomized strategy. Furthermore,
there are different function invocation arrivals at t2, t3, and t4,
respectively. OCS employs the available containers and Zygotes
to host the function. For instance, at t3, the available contain-
ers include one container and two Zygotes. OCS imports the
private packages into the two available Zygotes to host the two
functions.

E. Algorithm Analysis

This subsection analyzes the OCS’s computational complex-
ity and competitive ratio.

Theorem 1: The computational complexity of the OCS is
O
(
|K|2|S|

)
.

Proof: The OCS’s computational complexity analysis can
be decomposed into two primary constituents. Firstly, OCS
invokes IDCS. In a worst-case scenario, IDCS will undergo
nesting and traverse the sets K and S . Consequently, the
worst-case computational complexity of IDCS is denoted as
O
(
|K|2|S|

)
. Additionally, RS and TS are characterized by a

constant computational complexity of O
(
1
)
. OCS invokes RS

once up to |λ| times, where |λ| denotes the total number of the
serverless function invocations. Similarly, the subroutine TS is
invoked up to |λ| times. Consequently, when considering all
components, the worst-case time complexity can be expressed
as O

(
max

{
|K|2|S|, |λ|

})
. Given that |λ| is essentially a con-

stant, OCS’s computational complexity can be represented as
O
(
|K|2|S|

)
. �

Theorem 2: The proposed OCS is c-competitive, where
c = maxk∈K

{[
ck + maxk,k′∈Ki

{
rk′�ηdk′/

(
rk′ − ri

)
� +

ri
(
�η
(
ck′ − dk′

)
/ri� − �ηdk′/

(
rk′ − ri

)
�
)}]

/rk
}

.
Proof: The overall cost of the OCS can be decomposed

into the sum of the costs associated with hosting functions,
along with the additional memory cost denoted as
 stemming
from unserved functions. The relationship between the overall
cost incurred by the OCS and the offline optimal cost can be
expressed as follows:

COST≤ c ·OPT+
. (26a)

This decomposition allows us to establish an upper bound c
for the cost of hosting a function. Based on this upper bound,
the OCS’s competitive ratio is derived. First, for the type-
k function (k ∈ Ki), we can establish a lower bound on the
optimal cost required to host it, which can be expressed as
OPTk =min

{
rkt, rit+ ηdk, ηck

}
≥ rk.

Then, we need to account for the upper bound on the OCS’s
cost to host the type-k function. Due to memory constraints, a
container might be unable to start on a particular server. The
worst-case scenario unfolds when the system can only distribute
the invocation to a server with adequate memory and end the
service instance of the container in a “not-cache state”, followed
by a cold-start delay. Hence, the upper bound on the cost of
serving type-k function can be bounded by COSTk ≤ ck +
maxk′∈Ki

{
rk′�ηdk′/

(
rk′ − ri

)
� + ri

(
�η
(
ck′ − dk′

)
/ri� −

�ηdk′/
(
rk′ − ri

)
�
)}

. Consequently, the maximum cost ratio
is c=maxk∈K

{[
ck +maxk,k′∈Ki

{
rk′�ηdk′/

(
rk′ − ri

)
�+

ri
(
�η
(
ck′ − dk′

)
/ri� − �ηdk′/

(
rk′ − ri

)
�
)}]

/rk
}

.
Finally, in the worst case, all the memory resources

of the edge cluster are occupied up to the duration
maxk∈K

{
�η
(
ck − dk

)
/ri�

}
, so the additional memory cost

is
 =maxk∈K
{
�η
(
ck − dk

)
/ri�

}∑
s∈S Rs. Consequently,

the competitive ratio for the OCS is derived as c. �

VI. EVALUATION

In this section, the performance of the OCS is validated with
trace-driven simulations based on real-world datasets.

A. Experiment Setups

Simulation environments: In the experiment, we consider
an edge cluster consisting of 10 servers, and the memory capac-
ity of each server is set as [32, 64] GB. 200 packages are used to
build 100 serverless functions. These serverless functions share
30 Zygotes. The bare basic container requires 15MB memory
[36]. The container sizes are [25, 50] MB. The corresponding
Zygote sizes are [20, 35] MB. The cold-start delay of the con-
tainer is set as [1.2, 3.7] second, and the help-start delay of the
container is set as [0.1, 0.8] second.

Dataset selection: The Microsoft Azure datasets [31] are
used, which contain the invocations of functions on Microsoft
Azure. We randomly select the trace of 400 functions from
the Microsoft Azure datasets to generate traces 1 to 4, which
represent the various scenarios of the invocation patterns.

Performance metrics: The performance metrics in the eval-
uation are as follows.

• Overall Cost: The objective function value.
• Memory Cost: The memory cost for reserving the idle

containers and the Zygotes.
• Average Delay: The average startup delay per container.
Baseline algorithms: The state-of-the-art solutions are em-

ployed as the following baseline algorithms.
• Identifying Idle Container (IIC) [16]: This algorithm iden-

tifies 95%-idle of the function invocation interval as a
threshold to cache these idle containers as the Zygotes.

• Fixed Caching Interval (FCI) [41]: This algorithm caches
the idle containers for a fixed time. Here, we cache each
idle container for one slot, followed by caching it as the
Zygote for one slot.

• Delay Greedy (DG): This algorithm is a greedy histogram-
based strategy to minimize startup delay as much as pos-
sible. DG sets the maximal interval as a threshold to the
cache container.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2757

Fig. 4. Overall cost in different function invocation patterns.

Fig. 5. Memory consumption and container startup.

Fig. 6. Overall cost in different weights.

Fig. 7. Memory cost and average delay.

• Classic Ski Rental (CSR): This algorithm uses the solution
of the classic ski-rental problem. The type-k container is
cached as the Zygote after �ηdk/

(
rk − ri

)
� time slots and

recycled after �η
(
ck − dk

)
/ri� time slots.

B. Experiment Results

Overall cost in different function invocation patterns: To
illustrate the performance of the OCS in the scenario of various
function invocation patterns, as shown in Fig. 4, we compare
the overall cost of the OCS with the baseline algorithms at
four traces. It can be seen that the overall cost of the OCS
outperforms the baseline algorithms in all cases. Furthermore,
compared to the widely used IIC and FCI, OCS demonstrates
an improvement in the performance of approximately 32% and
15%, respectively. To illustrate this, we document the memory
usage along with the percentage of containers experiencing
warm-start, help-start, and cold-start, as shown in Fig. 5. OCS
consumes relatively little memory, while only about 7% of
the containers undergo cold-start. Although DG, IIC, and FCI
make most containers undergo warm-start, they incur substan-
tial memory costs to reserve the idle containers and Zygotes,
consequently increasing the overall cost. In contrast, OCS

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

Fig. 8. Average delay under equivalent memory cost.

Fig. 9. Memory cost under equivalent average delay.

preferred to cache as Zygotes to reduce overall cost, benefiting
from the Zygotes’ memory efficiency and “parent container”
attributes. These results show that the OCS excels without prior
knowledge of future function invocation patterns. Thus, various
workload fluctuations can be handled efficiently.

Impact of different weight: The weight η defined in Eq.
(8a) is set from 70 to 150 to evaluate the overall cost with four
traces. From Fig. 6, we can observe that the different weights
significantly affect the overall cost. IIC, FCI, and DG make
decisions based on fixed strategy, lacking the ability to adapt
to weight changes and resulting in a degradation of the overall
performance. While the CSR can perceive weight changes, it
cannot adjust decisions when experiencing cold starts. OCS
dynamically adapts its decisions based on the count of unused
cached containers and the frequency of containers experiencing
cold starts, enabling it to outperform baseline algorithms across
all weight configurations. The outcomes obtained across vary-
ing weights prove the effectiveness of the OCS.

Memory cost and average delay: Fig. 7 shows the impact
of weights on the algorithm’s memory cost and average delay.
It can be seen that as the weight increases, both the OCS and
the CSR consume more memory cost (in Fig. 7(a)) to obtain
lower startup delay (in Fig. 7(b)). The other baseline algorithms
cannot make adaptive decisions based on the weight changes.
For the widely used IIC and FCI, it is observed that IIC incurs
a substantial memory cost, while FCI suffers from excessive
startup latency. Consequently, both IIC and FCI exhibit higher
overall costs than OCS. These results show that the OCS op-
timizes overall cost by incurring a relatively modest memory
cost while achieving a low average delay.

To evaluate the average delay under equivalent memory cost,
we change the weights to ensure the OCS incurs an equivalent
memory cost to the baseline algorithms. From Fig. 8(a)–8(d),
OCS can reduce up to 23% of the average delay against the
baseline algorithms. To further assess the memory cost under
an equivalent average delay, weights are adjusted to ensure
the OCS incurs an equivalent average delay to the baseline
algorithms. From Fig. 9(a)–9(d), we can observe that com-
pared to the baseline algorithms, OCS can reduce up to 15%
of the memory cost. These results demonstrate that the OCS
significantly enhances resource efficiency in edge servers with
constrained resources.

Execution time: As shown in Table II, we evaluate the execu-
tion time on different devices and with different problem sizes
to prove the low computational complexity of the OCS. The
execution time required by the OCS and the baseline algorithms
is close, indicating that the OCS does not bring unacceptable
execution costs. By decomposing the problem, OCS reduces
complexity and solves it effectively.

VII. DISCUSSION

Competitive ratio: Through theoretical analysis and exper-
imental evaluation, it can be demonstrated that OCS is both
efficient and has low computational complexity. Theorem 2
quantitatively assesses the algorithm’s effectiveness. This as-
sessment is valuable for designing practical containers, as it
allows us to adjust the container’s parameters to reduce the
competitive ratio. For example, lowering ck results in a decrease
in c, suggesting that improving the theoretical performance of

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE CONTAINER SCHEDULING WITH FAST FUNCTION STARTUP 2759

TABLE II
EXECUTION TIME FOR ALGORITHMS ON DIFFERENT DEVICES

Algorithm OCS IIC FCI DG CSR
Apple M2 27ms 21ms 27ms 20ms 22ms

Intel Xeon Silver 4210 51ms 209ms 51ms 210ms 40ms
Intel i9 14900KF 27ms 104ms 27ms 104ms 22ms
Intel i9 10900K 29ms 136ms 30ms 136ms 23ms

AMD EPYC 7742 42ms 126ms 41ms 126ms 33ms

|K|= 50, |S|= 5 5ms 4ms 5ms 5ms 4ms
|K|= 100, |S|= 5 18ms 13ms 18ms 13ms 14ms
|K|= 100, |S|= 20 46ms 38ms 47ms 37ms 40ms

the OCS can be achieved by minimizing the cold-start delay
of containers during their design phase. Overall, Theorem 2
establishes the worst-case bound of the OCS and highlights the
performance guarantees of the OCS.

Scalability and robustness: For alternative hardware re-
source constraints, such as CPU resources, OCS shows adapt-
ability by incorporating CPU costs into its objective function
and adjusting the container’s randomized strategy. Similar to the
handling of constraint (3a), OCS only needs to ensure sufficient
CPU resources when distributing function invocations. This
illustrates OCS’s high scalability in managing different resource
constraints. Additionally, OCS guarantees performance theo-
retically without prior knowledge of future function invocation
patterns. The experimental results in Fig. 4 further demonstrate
OCS’s robustness, as it effectively handles various workload
fluctuations.

VIII. CONCLUSION

This paper investigated the online container scheduling prob-
lem with fast function startup and low memory cost in edge
computing. We formulated an online joint optimization prob-
lem. An OCS algorithm was proposed to solve the problem.
A rigorous analysis was conducted to prove the OCS’s com-
putational complexity and competitive ratio. Furthermore, are
conducted using the real-world dataset. The experimental re-
sults illustrated the superior performance of the OCS, which
can reduce up to 23% of the average startup delay and up
to 15% of the memory cost. Future work will consider using
the Markov decision process to model the decision-making of
container caching problems further and deploy the algorithms
in the Kubernetes system.

REFERENCES

[1] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A
survey of opportunities, challenges, and applications,” ACM Comput.
Surv., vol. 54, no. 11s, pp. 1–32, 2022.

[2] “Apache openwhisk.” Apache OpenWhisk. Accessed: Dec. 5, 2023.
[Online]. Available: https://openwhisk.apache.org

[3] “Microsoft azure functions.” Microsoft. Accessed: Dec. 5, 2023. [On-
line]. Available: https://azure.microsoft.com/en-us/products/functions/

[4] L. Kong et al., “Edge-computing-driven internet of things: A survey,”
ACM Comput. Surv., vol. 55, no. 8, pp. 1–41, 2022.

[5] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. Tsang, “NOMA-
assisted multi-access mobile edge computing: A joint optimization of
computation offloading and time allocation,” IEEE Trans. Veh. Technol.,
vol. 67, no. 12, pp. 12244–12258, Dec. 2018.

[6] A. M. Potdar, D. Narayan, S. Kengond, and M. M. Mulla, “Performance
evaluation of docker container and virtual machine,” Procedia Comput.
Sci., vol. 171, pp. 1419–1428, 2020.

[7] Z. Li et al., “{RunD}: A lightweight secure container runtime for high-
density deployment and high-concurrency startup in serverless comput-
ing,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), USENIX,
2022, pp. 53–68.

[8] E. Jonas et al., “Cloud programming simplified: A Berkeley view on
serverless computing,” 2019, arXiv:1902.03383.

[9] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proc. 52nd Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), Columbus, OH, USA, Apr. 2019, pp.
1063–1075.

[10] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot,
“Benchmarking, analysis, and optimization of serverless function snap-
shots,” in Proc. 26th ACM Int. Conf. Architect. Support Program.
Lang. Operating Syst. (ASPLOS), New York, NY, USA: ACM, 2021,
pp. 559–572.

[11] R. B. Roy, T. Patel, and D. Tiwari, “IceBreaker: Warming serverless
functions better with heterogeneity,” in Proc. 27th ACM Int. Conf. Archit.
Support Program. Lang. Operating Syst. (ASPLOS), New York, NY,
USA: ACM, 2022, pp. 753–767.

[12] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), Berkeley, CA, USA: USENIX, 2018, pp. 133–146.

[13] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading cold
starts in serverless function chain deployments,” in Proc. 21st Int. Mid-
dleware Conf. (Middleware), Delft, Netherlands: ACM/IFIP/USENIX,
2020, pp. 356–370.

[14] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container
caching for serverless edge computing,” in Proc. IEEE Conf. Com-
put. Commun. (INFOCOM), Piscataway, NJ, USA: IEEE Press, 2022,
pp. 1069–1078.

[15] E. Oakes et al., “{SOCK}: Rapid task provisioning with {Serverless-
Optimized} containers,” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC), Berkeley, CA, USA: USENIX, 2018, pp. 57–70.

[16] Z. Li et al., “Help rather than recycle: Alleviating cold startup in
serverless computing through {Inter-Function} container sharing,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), Berkeley, CA, USA:
USENIX, 2022, pp. 69–84.

[17] S. Minakova and T. Stefanov, “Memory-throughput trade-off for CNN-
based applications at the edge,” ACM Trans. Des. Automat. Electron.
Syst., vol. 28, no. 1, pp. 1–26, 2022.

[18] S. Lee et al., “GreenDIMM: OS-assisted dram power management for
dram with a sub-array granularity power-down state,” in Proc. 54th
Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Columbus, OH,
USA, 2021, pp. 131–142.

[19] S. Irani, S. Shukla, and R. Gupta, “Competitive analysis of dynamic
power management strategies for systems with multiple power saving
states,” in Proc. Des., Automat. Test Europe Conf. Exhib. (DATE),
Piscataway, NJ, USA: IEEE Press, 2002, pp. 117–123.

[20] J. Augustine, S. Irani, and C. Swamy, “Optimal power-down strategies,”
in Proc. 45th Annu. IEEE Symp. Found. Comput. Sci. (FOCS 04),
Piscataway, NJ, USA: IEEE Press, 2004, pp. 530–539.

[21] Z. Lotker, B. Patt-Shamir, and D. Rawitz, “Rent, lease, or buy: Ran-
domized algorithms for multislope ski rental,” SIAM J. Discrete Math.,
vol. 26, no. 2, pp. 718–736, 2012.

[22] I. E. Akkus et al., “{SAND}: Towards {High-Performance} serverless
computing,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), Berke-
ley, CA, USA: USENIX, 2018, pp. 923–935.

[23] A. Wang et al., “{FaaSNet}: Scalable and fast provisioning of custom
serverless container runtimes at Alibaba Cloud function compute,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), Berkeley, CA, USA:
USENIX, 2021, pp. 443–457.

[24] M. Arutyunyan et al., “Decentralized and stateful serverless computing
on the internet computer blockchain,” in Proc. USENIX Annu. Tech.
Conf. (USENIX ATC), Berkeley, CA, USA: USENIX, 2023, pp. 329–
343.

[25] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), Berkeley, CA, USA: USENIX, 2020, pp. 419–433.

[26] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing,” IEEE Trans.
Mobile Comput., vol. 22, no. 6, pp. 3444–3459, Jun. 2023.

[27] J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient container
assignment and layer sequencing in edge computing,” IEEE Trans.
Services Comput., vol. 16, no. 2, pp. 1118–1131, Mar./Apr. 2022.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

https://openwhisk.apache.org
https://azure.microsoft.com/en-us/products/functions/

2760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 12, DECEMBER 2024

[28] B. Wang, A. Ali-Eldin, and P. Shenoy, “LaSS: Running latency sensitive
serverless computations at the edge,” in Proc. 30th Int. Symp. High-
Perform. Parallel Distrib. Comput. (HPDC), New York, NY, USA:
ACM, 2021, pp. 239–251.

[29] V. Mittal et al., “Mu: An efficient, fair and responsive serverless
framework for resource-constrained edge clouds,” in Proc. ACM Symp.
Cloud Comput. (SoCC), New York, NY, USA: ACM, 2021, pp. 168–181.

[30] L. Patterson et al., “HiveMind: A hardware-software system stack for
serverless edge swarms,” in Proc. 49th Annu. Int. Symp. Comput. Archit.
(ISCA 22), New York, NY, USA: ACM, 2022, pp. 800–816.

[31] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), Berkeley, CA, USA: USENIX, 2020,
pp. 205–218.

[32] L. Zhang et al., “Tapping into NFV environment for opportunistic
serverless edge function deployment,” IEEE Trans. Comput., vol. 71,
no. 10, pp. 2698–2704, Oct. 2022.

[33] J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu, “Defuse: A
dependency-guided function scheduler to mitigate cold starts on FaaS
platforms,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 194–204.

[34] A. Kumari and B. Sahoo, “ACPM: Adaptive container provisioning
model to mitigate serverless cold-start,” Cluster Comput., vol. 27,
no. 2, pp. 1333–1360, 2024.

[35] B. Sethi, S. K. Addya, and S. K. Ghosh, “LCS: Alleviating total
cold start latency in serverless applications with LRU warm container
approach,” in Proc. 24th Int. Conf. Distrib. Comput. Netw. (ICDCN),
New York, NY, USA: ACM, 2023, pp. 197–206.

[36] Y. Li, D. Zeng, L. Gu, M. Ou, and Q. Chen, “On efficient zygote
container planning toward fast function startup in serverless edge cloud,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Piscataway, NJ,
USA: IEEE Press, 2023, pp. 1–9.

[37] A. Borodin and R. El-Yaniv, “On randomization in on-line computation,”
Inf. Comput., vol. 150, no. 2, pp. 244–267, 1999.

[38] A. Khanafer, M. Kodialam, and K. P. Puttaswamy, “To rent or to buy
in the presence of statistical information: The constrained ski-rental
problem,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1067–1077,
Aug. 2015.

[39] C. Dong, H. Zeng, and M. Chen, “A cost efficient online algorithm for
automotive idling reduction,” in Proc. 51st Annu. Des. Automat. Conf.
(DAC), New York, NY, USA: ACM, 2014, pp. 1–6.

[40] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge University Press, 2004.

[41] “AWS Lambda.” AWS. Accessed: Dec. 5, 2023. [Online]. Available:
https://aws.amazon.com/lambda/

Zhenzheng Li received the B.S. degree from the
School of Information Technology, Beijing Institute
of Technology, Zhuhai, China, in 2019, and the
M.S. degree from the School of Information and
Control Engineering, China University of Mining
and Technology, China, in 2022. He is currently
working toward the Ph.D. degree with the School
of Artificial Intelligence, Beijing Normal University,
China. His research interests include edge comput-
ing and resource scheduling.

Jiong Lou (Member, IEEE) received the B.S.
and Ph.D. degrees from the Department of Com-
puter Science and Engineering, Shanghai Jiao Tong
University, China, in 2016 and 2023, respectively.
Since 2023, he has held the position of a Research
Assistant Professor with the Department of Com-
puter Science and Engineering, Shanghai Jiao Tong
University, China. He has published more than 10
papers in leading journals and conferences such as
ToN, TMC, and TSC. His research interests include
edge computing, task scheduling, and container

management.

Jianfei Wu received the B.E. degree from the
School of Computer Science and Technology, Qing-
dao University, China, in 2023. He is currently
working toward the Ph.D. degree with the School
of Artificial Intelligence, Beijing Normal University.
His research interests include edge computing, large
language models, and reinforcement learning.

Jianxiong Guo (Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science, University of Texas at Dallas, Richardson,
TX, USA, in 2021. Currently, he is an Associate
Professor with the Advanced Institute of Natural
Sciences, Beijing Normal University, and also with
Guangdong Key Lab of AI and Multi-Modal Data
Processing, BNU-HKBU United International Col-
lege, Zhuhai, China. His research interests include
social networks, wireless sensor networks, combi-
natorial optimization, and machine learning. He is

a member of ACM and CCF.

Zhiqing Tang (Member, IEEE) received the B.S.
degree from the School of Communication and
Information Engineering, University of Electronic
Science and Technology of China, China, in 2015,
and the Ph.D. degree from the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China, in 2022. Currently, he is an
Assistant Professor with the Advanced Institute of
Natural Sciences, Beijing Normal University, China.
His research interests include edge computing, re-
source scheduling, and reinforcement learning.

Ping Shen received his B.Sc. and M.Sc. degrees
in communication and information system from
the Southeast University, in 2001 and 2006, re-
spectively. Currently, he is an Assistant Researcher
with the Institute of Artificial Intelligence and Fu-
ture Networks, Beijing Normal University. His re-
search interests include high performance comput-
ing, edge computing, and wireless networks. He has
11 patents and has published one research book.

Weijia Jia (Fellow, IEEE) received the B.Sc. and
M.Sc. degrees from the Center South University,
China, in 1982 and 1984, respectively, and Master
of Applied Science and Ph.D. degrees from the
Polytechnic Faculty of Mons, Belgium, in 1992 and
1993, respectively. Currently, he is a Chair Profes-
sor, the Director of BNU-UIC Institute of Artificial
Intelligence and Future Networks, Beijing Normal
University (Zhuhai) and the VP for Research of
BNU-HKBU United International College. His re-
search interests include optimal network routing and

deployment, networking, AI, and edge computing. He is the Distinguished
Member of CCF.

Wei Zhao (Fellow, IEEE) received the Ph.D. de-
gree in computer and information sciences from
the University of Massachusetts, Amherst, in 1983
and 1986, respectively. He has served important
leadership roles in academic including the Dean
of Science with the Rensselaer Polytechnic Insti-
tute, the Director for the Division of Computer
and Network Systems in the U.S. National Science
Foundation, and the Senior Associate Vice President
for Research, Texas A & M University. Dr. Zhao
was awarded the Lifelong Achievement Award by

the Chinese Association of Science and Technology in 2005.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/lambda/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

